IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3654-d384888.html
   My bibliography  Save this article

Optimal Design of High-Power Medium-Frequency Transformer Using Hollow Conductors with Consideration of Multi-Objective Parameters

Author

Listed:
  • Yunxiang Guo

    (College of Electrical Engineering, Nantong University, Nantong 226019, China)

  • Cheng Lu

    (College of Electrical Engineering, Nantong University, Nantong 226019, China
    Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China)

  • Liang Hua

    (College of Electrical Engineering, Nantong University, Nantong 226019, China
    Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China)

  • Xinsong Zhang

    (College of Electrical Engineering, Nantong University, Nantong 226019, China)

Abstract

A power electronic transformer (PET) is applied to the high-speed train for lightweight demand. A 300 kW/5 kHz high-power medium-frequency transformer (HPMFT) using hollow conductors in a power unit of the PET is optimally designed in this paper. The target of the design is to balance the loss, leakage inductance, and weight of the HPMFT. For this purpose, the design parameters of the HPMFT are firstly confirmed according to the system structure and parameters of the PET. Secondly, the design process of HPMFT is developed. Finally, the results of 48 design schemes of core-type and shell-type structures are compared by the comprehensive evaluation standard, which equilibrates the three above objective parameters of the HPMFT. According to the optimal scheme, a prototype is manufactured, whose test results verify the correctness of the optimal design method.

Suggested Citation

  • Yunxiang Guo & Cheng Lu & Liang Hua & Xinsong Zhang, 2020. "Optimal Design of High-Power Medium-Frequency Transformer Using Hollow Conductors with Consideration of Multi-Objective Parameters," Energies, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3654-:d:384888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Azharuddin Shamshuddin & Felix Rojas & Roberto Cardenas & Javier Pereda & Matias Diaz & Ralph Kennel, 2020. "Solid State Transformers: Concepts, Classification, and Control," Energies, MDPI, vol. 13(9), pages 1-35, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Oliveira & André Mendes & Luís Caseiro, 2022. "Model Predictive Control for Solid State Transformers: Advances and Trends," Energies, MDPI, vol. 15(22), pages 1-27, November.
    2. Weichong Yao & Junwei Lu & Foad Taghizadeh & Feifei Bai & Andrew Seagar, 2023. "Integration of SiC Devices and High-Frequency Transformer for High-Power Renewable Energy Applications," Energies, MDPI, vol. 16(3), pages 1-27, February.
    3. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    4. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    5. Amer Bineshaq & Md Ismail Hossain & Hamed Binqadhi & Aboubakr Salem & Mohammad A. Abido, 2023. "Design and Control of Two-Stage DC-AC Solid-State Transformer for Remote Area and Microgrid Applications," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    6. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    7. Mohammed Radi & Mohamed Darwish & Gareth Taylor & Ioana Pisica, 2021. "Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer," Energies, MDPI, vol. 14(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3654-:d:384888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.