IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p824-d210286.html
   My bibliography  Save this article

Comprehensive Power Flow Analyses and Novel Feedforward Coordination Control Strategy for MMC-Based UPFC

Author

Listed:
  • Jinlian Liu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Xu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Liang Xiao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

This paper aims to discover the general steady-state operation characteristics, as well as improving the dynamic performance, of the modular multilevel converter (MMC)-based unified power flow controller (UPFC). To achieve this, first, we established a detailed power flow model for MMC-based UPFC containing each critical part and made qualitative and graphical analyses combining 2-dimensional operation planes and 3-dimensional spatial curve surfaces comprehensively to derive general power flow principles and offer necessary references for regulating UPFC. Furthermore, to achieve better performance, we designed a feedforward control strategy for the shunt and series converters of UPFC, both comprising two feedforward control blocks with the introduction of necessary compensating branches, and analyzed the performance in complex and time domain, respectively. The proposed power flow principles and control strategies were validated by a (power systems computer aided design) PSCAD model of 220 kV double-end system; the results reveal the MMC-based UPFC can realize the power flow principles and improve the control speed, stability, and precision of the power flow regulations under various conditions.

Suggested Citation

  • Jinlian Liu & Zheng Xu & Liang Xiao, 2019. "Comprehensive Power Flow Analyses and Novel Feedforward Coordination Control Strategy for MMC-Based UPFC," Energies, MDPI, vol. 12(5), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:824-:d:210286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joaquim Monteiro & Sónia Pinto & Aranzazu Delgado Martin & José Fernando Silva, 2017. "A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters," Energies, MDPI, vol. 10(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias Diaz & Roberto Cárdenas Dobson & Efrain Ibaceta & Andrés Mora & Matias Urrutia & Mauricio Espinoza & Felix Rojas & Patrick Wheeler, 2020. "An Overview of Applications of the Modular Multilevel Matrix Converter," Energies, MDPI, vol. 13(21), pages 1-37, October.
    2. Alberto Duran & Efrain Ibaceta & Matias Diaz & Felix Rojas & Roberto Cardenas & Hector Chavez, 2020. "Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    4. Panos Kotsampopoulos & Pavlos Georgilakis & Dimitris T. Lagos & Vasilis Kleftakis & Nikos Hatziargyriou, 2019. "FACTS Providing Grid Services: Applications and Testing," Energies, MDPI, vol. 12(13), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Duran & Efrain Ibaceta & Matias Diaz & Felix Rojas & Roberto Cardenas & Hector Chavez, 2020. "Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    2. Xi Wu & Zhengyu Zhou & Gang Liu & Wanchun Qi & Zhenjian Xie, 2017. "Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes," Energies, MDPI, vol. 10(8), pages 1-15, August.
    3. Asare Koduah & Francis Boafo Effah, 2022. "Fuzzy-Logic-Controlled Hybrid Active Filter for Matrix Converter Input Current Harmonics," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. Jianwei Zhang & Margarita Norambuena & Li Li & David Dorrell & Jose Rodriguez, 2019. "Sequential Model Predictive Control of Three-Phase Direct Matrix Converter," Energies, MDPI, vol. 12(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:824-:d:210286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.