IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p708-d208023.html
   My bibliography  Save this article

The Piezoelectric Phenomenon in Energy Harvesting Scenarios: A Theoretical Study of Viable Applications in Unbalanced Rotor Systems

Author

Listed:
  • Adolfo Dannier

    (Department of Electrical Eng. and IT, DIETI, University of Naples, Federico II, 80125 Naples, Italy)

  • Gianluca Brando

    (Department of Electrical Eng. and IT, DIETI, University of Naples, Federico II, 80125 Naples, Italy)

  • Francesca Nikita Ruggiero

    (Department of Electrical Eng. and IT, DIETI, University of Naples, Federico II, 80125 Naples, Italy)

Abstract

The present paper deals with the promising energy harvesting applications of a composite piezoelectric metal support that is properly designed for the rotor of a mechanical system. The aim is to determine whether the vibrational power coming from the static residual imbalance, which is generally considered to be an undesired and useless side-effect of the rotation, can be converted into electric power and then stored to be used in other applications. The analysis, starting from the Jeffcott rotor model and the piezoelectric constitutive equations, has been carried out by developing an approximated linear model of a piezoelectric support, in order to theoretically evaluate the performance and the feasibility of the proposed system. The accuracy of the exploited analytical model has been validated for both static and dynamic operations by 3D Ansys ® Mechanical APDL. Finally, a MatLab ® /Simulink ® model has been built to simulate the electric behavior of the piezoelectric material, and to estimate the power that it is possible to extract via an alternative/direct current converter (AC/DC converter). The numerical results achieved confirm the effectiveness of the proposed energy-harvesting system.

Suggested Citation

  • Adolfo Dannier & Gianluca Brando & Francesca Nikita Ruggiero, 2019. "The Piezoelectric Phenomenon in Energy Harvesting Scenarios: A Theoretical Study of Viable Applications in Unbalanced Rotor Systems," Energies, MDPI, vol. 12(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:708-:d:208023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/708/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider Jaafar Chilabi & Hanim Salleh & Eris E. Supeni & Azizan As’arry & Khairil Anas Md Rezali & Ahmed B. Atrah, 2020. "Harvesting Energy from Planetary Gear Using Piezoelectric Material," Energies, MDPI, vol. 13(1), pages 1-25, January.
    2. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    3. Chongsei Yoon & Buil Jeon & Giwan Yoon, 2019. "A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil," Energies, MDPI, vol. 12(14), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:708-:d:208023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.