IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p523-d204081.html
   My bibliography  Save this article

The Influence of Residence Time during Hydrothermal Carbonisation of Miscanthus on Bio-Coal Combustion Chemistry

Author

Listed:
  • Aidan M. Smith

    (School of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark)

  • Andrew B. Ross

    (School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK)

Abstract

Miscanthus was treated by hydrothermal carbonisation in a 2-L batch reactor at 200 °C and 250 °C with residence times ranging between 0 and 24 h to understand the impact of residence time has on the resulting bio-coal combustion chemistry. Increasing the residence time results in dehydration of the bio-coal and increased repolymerisation; however, temperature has the greatest influence on bio-coal properties. After 24 h at 200 °C, bio-coal has similar properties to that of the 250 °C + 0 h bio-coal. After 1 h at 250 °C, the cellulose present in the raw biomass appears to be largely removed. The removal of cellulose and the associated dehydration and repolymerisation results in bio-coal having a ‘coal like’ combustion profile, which exhibits a decreasing reactivity with increasing residence time. At 200 °C + 0 h, 75% of the alkali metal is removed, increasing to 86% with increasing residence time. Further extraction is seen at 250 °C. Phosphorus and sulphur appear to undergo substantial extraction at 200 °C + 0 h but then are reincorporated with increasing residence time. The calcium content increases in the bio-coal with increasing residence time at 200 °C but then reduces after 1 h at 250 °C. Increasing temperature and residence time has been shown to decrease the fuels’ fouling and slagging propensity.

Suggested Citation

  • Aidan M. Smith & Andrew B. Ross, 2019. "The Influence of Residence Time during Hydrothermal Carbonisation of Miscanthus on Bio-Coal Combustion Chemistry," Energies, MDPI, vol. 12(3), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:523-:d:204081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monica Puccini & Lucia Ceccarini & Daniele Antichi & Maurizia Seggiani & Silvia Tavarini & Marisa Hernandez Latorre & Sandra Vitolo, 2018. "Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    2. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    3. Aidan Mark Smith & Ugochinyere Ekpo & Andrew Barry Ross, 2020. "The Influence of pH on the Combustion Properties of Bio-Coal Following Hydrothermal Treatment of Swine Manure," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
    5. Aaron E. Brown & James M. Hammerton & Miller Alonso Camargo-Valero & Andrew B. Ross, 2022. "Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathleen Meisel & Andreas Clemens & Christoph Fühner & Marc Breulmann & Stefan Majer & Daniela Thrän, 2019. "Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use," Energies, MDPI, vol. 12(5), pages 1-16, February.
    2. Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:523-:d:204081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.