IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p262-d197998.html
   My bibliography  Save this article

Numerical Analysis of Transient Pressure Behaviors with Shale Gas MFHWs Interference

Author

Listed:
  • Dapeng Gao

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuewu Liu

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Daigang Wang

    (Beijing International Center for Gas Hydrate, Peking University, Beijing 100871, China)

  • Guofeng Han

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

After the large-scale horizontal well pattern development in shale gas fields, the problem of fast pressure drop and gas well abandonment caused by well interference becomes more serious. It is urgent to understand the downhole transient pressure and flow characteristics of multi-stage fracturing horizontal well (MFHW) with interference. Therefore, the reservoir around the MFHW is divided into three regions: fracturing fracture, Stimulated reservoir volume (SRV), and unmodified matrix. Then, multi-region coupled flow model is established according to reservoir physical property and flow mechanism of each part. The model is numerically solved using the perpendicular bisection (PEBI) grids and the finite volume method. The accuracy of the model is verified by analyzing the measured pressure recovery data of one practical shale gas well and fitting the monitoring data of the later production pressure. Finally, this model is used to analyze the effects of factors, such as hydraulic fractures’ connectivity, well distance, the number of neighboring wells and well pattern arrangement, on the transient pressure and seepage characteristics of the well. The study shows that the pressure recovery double logarithmic curves fall in later part when the well is disturbed by a neighboring production well. The earlier and more severe the interference, the sooner the curve falls off and the larger the amplitude shows. If the well distance is closer, and if there are more neighboring wells and interconnected corresponding fracturing segments, the more severe interference appears among the wells. Moreover, the well interference may still exist even without interlinked fractures or SRV. Especially, severe interference will affect production when the hydraulic fractures are connected directly, and the interference is weaker when only SRV induced fracture network combined between wells, which is beneficial to production sometimes. When severe well interference occurs, periodic well shut-in is needed to help restore the reservoir pressure and output capacity. In the meanwhile, the daily output should be controlled reasonably to prolong the stable production time. This research will help to understand the impact of well interference to gas production, and to optimize the well spacing and achieve satisfied performance.

Suggested Citation

  • Dapeng Gao & Yuewu Liu & Daigang Wang & Guofeng Han, 2019. "Numerical Analysis of Transient Pressure Behaviors with Shale Gas MFHWs Interference," Energies, MDPI, vol. 12(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:262-:d:197998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/262/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianliang Xu & Yingjie Xu & Yong Wang & Yong Tang, 2022. "Multi-Well Pressure Interference and Gas Channeling Control in W Shale Gas Reservoir Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-13, December.
    2. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    3. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    4. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:262-:d:197998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.