IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4776-d298066.html
   My bibliography  Save this article

High Frequency Square-Wave Voltage Injection Scheme-Based Position Sensorless Control of IPMSM in the Low- and Zero- Speed Range

Author

Listed:
  • Shuang Wang

    (School of Mechatronic Engineering and Automation, Shanghai University, Baoshan District, Shanghai 200444, China)

  • Jianfei Zhao

    (School of Mechatronic Engineering and Automation, Shanghai University, Baoshan District, Shanghai 200444, China)

  • Kang Yang

    (School of Mechatronic Engineering and Automation, Shanghai University, Baoshan District, Shanghai 200444, China)

Abstract

In this paper, a new sensorless control scheme with the injection of a high-frequency square-wave voltage of an interior permanent-magnet synchronous motor (IPMSM) at low- and zero-speed operation is proposed. Conventional schemes may face the problems of obvious current sampling noise and slow identification in the process of magnetic polarity detection at zero speed operation, and the effects of inverter voltage error on the rotor position estimation accuracy at low speed operation. Based on the principle analysis of d-axis magnetic circuit characteristics, a method for determining the direction of magnetic polarity of d-axis two-opposite DC voltage offset by uninterruptible square-wave injection is proposed, which is fast in convergence rate of magnetic polarity detection and more distinct. In addition, the strategy injects a two-opposite high-frequency square-wave voltage vectors other than the one voltage vector into the estimated synchronous reference frame (SRF), which can reduce the effects of inverter voltage error on the rotor position estimation accuracy. With this approach, low-pass filter (LPF) and band-pass filter (BPF), which are used to obtain the fundamental current component and high-frequency current response with rotor position information respectively in the conventional sensorless control, are removed to simplify the signal process for estimating the rotor position and further improve control bandwidth. Finally, the experimental results on an IPMSM drive platform indicate that the rotor position with good steady state and dynamic performance can be obtained accurately at low-and zero-speed operation with the sensorless control strategy.

Suggested Citation

  • Shuang Wang & Jianfei Zhao & Kang Yang, 2019. "High Frequency Square-Wave Voltage Injection Scheme-Based Position Sensorless Control of IPMSM in the Low- and Zero- Speed Range," Energies, MDPI, vol. 12(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4776-:d:298066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Hua & Ling Kang Zhou, 2015. "Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-19, December.
    2. Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolei Cai & Qixuan Wang & Yucheng Wang & Li Zhang, 2023. "Research on a Variable-Leakage-Flux Permanent Magnet Motor Control System Based on an Adaptive Tracking Estimator," Energies, MDPI, vol. 16(2), pages 1-16, January.
    2. Jongwon Choi, 2021. "Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range," Energies, MDPI, vol. 14(19), pages 1-18, October.
    3. Ke Yu & Zuo Wang & Ling Li, 2022. "An Optimized Time Sequence for Sensorless Control of IPMSM Drives via High-Frequency Square-Wave Signal Injection Scheme," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Rasekh & Peter Sergeant & Jan Vierendeels, 2016. "Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets," Energies, MDPI, vol. 9(12), pages 1-17, November.
    2. Klemen Drobnič & Lovrenc Gašparin & Rastko Fišer, 2019. "Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization," Energies, MDPI, vol. 12(5), pages 1-20, February.
    3. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    4. Michele De Santis & Sandro Agnelli & Fabrizio Patanè & Oliviero Giannini & Gino Bella, 2018. "Experimental Study for the Assessment of the Measurement Uncertainty Associated with Electric Powertrain Efficiency Using the Back-to-Back Direct Method," Energies, MDPI, vol. 11(12), pages 1-19, December.
    5. Andrzej Łebkowski, 2018. "Reduction of Fuel Consumption and Pollution Emissions in Inland Water Transport by Application of Hybrid Powertrain," Energies, MDPI, vol. 11(8), pages 1-16, July.
    6. Yunkai Huang & Baocheng Guo & Ahmed Hemeida & Peter Sergeant, 2016. "Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings," Energies, MDPI, vol. 9(11), pages 1-19, October.
    7. Taewook Ha & Nyeon Gu Han & Min Soo Kim & Kyu Heon Rho & Dong Kyu Kim, 2021. "Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Dongliang Liu & Xinhua Guo & Youjian Lei & Rongkun Wang & Ruipei Chen & Fenyu Chen & Zhongshen Li, 2022. "An Improved Control Strategy of PMSM Drive System with Integrated Bidirectional DC/DC," Energies, MDPI, vol. 15(6), pages 1-16, March.
    9. Gianluca Brando & Adolfo Dannier & Andrea Del Pizzo, 2022. "Efficiency Analytical Characterization for Brushless Electric Drives," Energies, MDPI, vol. 15(8), pages 1-11, April.
    10. Miran Rodič & Miro Milanovič & Mitja Truntič, 2018. "Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain," Energies, MDPI, vol. 11(9), pages 1-24, August.
    11. Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
    12. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    13. Feng Li & Xiaoyong Zhu, 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4776-:d:298066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.