IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3141-d257999.html
   My bibliography  Save this article

Analysis of Inertia Characteristics of Direct-Drive Permanent-Magnet Synchronous Generator in Micro-Grid

Author

Listed:
  • Donghui Zhang

    (School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008, China)

  • Yongbin Wu

    (School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China)

  • Liansong Xiong

    (School of Automation, Nanjing Institute of Technology, Nanjing 211167, China)

  • Chengyong Zhao

    (The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China)

Abstract

Micro-grid has received extensive attention as an effective way to absorb new energy. Compared to large power systems, the micro-grid system consisting of power electronics is relatively weak due to the lack of support for synchronous machines. In this paper, the direct-drive wind turbine (WT) is connected to the low-inertia micro-grid as the research background. Based on the virtual inertia control of the WT, the inertia source and the physical mechanism of the WT connected to the micro-grid system are studied. The inertia characteristics of the rotor of the WT on the electromechanical time-scale, the DC side capacitor on the DC voltage time-scale, and the simulated grid under the droop control are analyzed. The research results show that under the control of the system, the inertia of the system is derived from the WT, DC capacitor, and the micro-grid simulated by droop control converter. The equivalent inertia of each link is determined by the control parameters, steady-state operating point, and structural parameters. The resulting inertia characteristics will have frequency domain characteristics under control. Finally, the correctness of the system inertia analysis conclusion is verified by simulation and experiment.

Suggested Citation

  • Donghui Zhang & Yongbin Wu & Liansong Xiong & Chengyong Zhao, 2019. "Analysis of Inertia Characteristics of Direct-Drive Permanent-Magnet Synchronous Generator in Micro-Grid," Energies, MDPI, vol. 12(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3141-:d:257999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liancheng Xiu & Liansong Xiong & Ping Yang & Zhiliang Kang, 2018. "Inertial and Damping Characteristics of DC Distributed Power Systems Based on Frequency Droop Control," Energies, MDPI, vol. 11(9), pages 1-14, September.
    2. Yongbin Wu & Donghui Zhang & Liansong Xiong & Sue Wang & Zhao Xu & Yi Zhang, 2019. "Modeling and Mechanism Investigation of Inertia and Damping Issues for Grid-Tied PV Generation Systems with Droop Control," Energies, MDPI, vol. 12(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changqing Chen & Xinran Li, 2021. "Configuration Method and Multi-Functional Strategy for Embedding Energy Storage into Wind Turbine," Energies, MDPI, vol. 14(17), pages 1-21, August.
    2. Feng Wang & Lizheng Sun & Zhang Wen & Fang Zhuo, 2022. "Overview of Inertia Enhancement Methods in DC System," Energies, MDPI, vol. 15(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    2. Yongbin Wu & Donghui Zhang & Liansong Xiong & Sue Wang & Zhao Xu & Yi Zhang, 2019. "Modeling and Mechanism Investigation of Inertia and Damping Issues for Grid-Tied PV Generation Systems with Droop Control," Energies, MDPI, vol. 12(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3141-:d:257999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.