IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2952-d253569.html
   My bibliography  Save this article

The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose

Author

Listed:
  • Kamila Przybysz Buzała

    (Natural Fibers Advanced Technologies, 42A Blekitna Str., 93-322 Lodz, Poland)

  • Halina Kalinowska

    (Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Lodz, Poland)

  • Edyta Małachowska

    (Faculty of Wood Technology, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776 Warsaw, Poland)

  • Piotr Boruszewski

    (Faculty of Wood Technology, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776 Warsaw, Poland)

  • Krzysztof Krajewski

    (Faculty of Wood Technology, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776 Warsaw, Poland)

  • Piotr Przybysz

    (Faculty of Wood Technology, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776 Warsaw, Poland)

Abstract

The results of enzymatic hydrolysis of birch and beech kraft cellulosic pulps indicate that they may be promising feedstocks for fermentation processes including biofuel manufacturing. The aim of this study was to investigate whether birch and beech wood require the same degree of delignification by kraft pulping as pine wood. The differences observed in the efficiency of hydrolysis for the raw materials tested suggest that the differences in the anatomical structure of the examined wood in relation to pine wood is essential for the efficiency of the enzymatic hydrolysis process. The yields of glucose and other reducing sugars obtained from the birch and beech cellulosic pulps were similar (up to around 75% and 98.3% dry weight, and 76% and 98.6% dry weight, respectively). The highest glucose yields from cellulose contained in the birch and beech pulp were around 81.2% (at a Kappa number of 28.3) and 83.1% (at a Kappa number of 30.4), respectively. The maximum glucose yields and total reducing sugars of birch wood on a dry weight basis (39.8% and 52.1%, respectively) were derived from the pulp at a Kappa number of 28.3, while the highest yields of glucose and total reducing sugars of beech wood on a dry weight basis (around 36.9% and 48.2%, respectively) were reached from the pulp at a Kappa number of 25.3. To obtain the highest glucose yields and total reducing sugars of a wood on a dry weight basis, total lignin elimination from the birch and beech pulps was not necessary. However more in-depth delignification of birch and beech wood is required than for pine wood.

Suggested Citation

  • Kamila Przybysz Buzała & Halina Kalinowska & Edyta Małachowska & Piotr Boruszewski & Krzysztof Krajewski & Piotr Przybysz, 2019. "The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose," Energies, MDPI, vol. 12(15), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2952-:d:253569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2952/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
    2. Soo-Kyeong Jang & Hanseob Jeong & In-Gyu Choi, 2023. "The Effect of Cellulose Crystalline Structure Modification on Glucose Production from Chemical-Composition-Controlled Biomass," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    3. Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
    4. Maziarka, Przemyslaw & Sommersacher, Peter & Wang, Xia & Kienzl, Norbert & Retschitzegger, Stefan & Prins, Wolter & Hedin, Niklas & Ronsse, Frederik, 2021. "Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2952-:d:253569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.