IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2905-d252481.html
   My bibliography  Save this article

A Structure-Reconfigurable Soft-Switching DC-DC Converter for Wide-Range Applications

Author

Listed:
  • Xianxu Huo

    (Electric Power Research Institute of State Grid Tianjin Electric Power Corporation, Tianjin 300384, China)

  • Ke Xu

    (State Grid Tianjin Electric Power Corporation, Tianjin 300310, China)

  • Ruixin Liu

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Xi Chen

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Zhanchun Li

    (State Grid Tianjin Electric Power Corporation Chengxi District Supply Company, Tianjin 300113, China)

  • Haiyun Yan

    (State Grid Tianjin Maintenance Company, Tianjin 300250, China)

Abstract

In this paper, a structure-reconfigurable resonant DC-DC (direct current – direct current) converter is presented. By controlling the state of the auxiliary switch, the converter could change the resonant structure to acquire a high efficiency and wide voltage gain range simultaneously. The characteristics of the LLC (inductor-inductor-capacitor) resonant converter are firstly analyzed. Based on this, through introducing additional resonant elements and adopting the topology morphing method, the proposed converter can be formed. Moreover, a novel parameter selection method is discussed to satisfy both working states. Then, a detailed loss analysis calculation is conducted to determine the optimal switching point. In addition, an extra resonant zero point is generated by the topology itself, and the inherent over-current protection is guaranteed. Finally, a 500 W prototype is built to demonstrate the theoretical rationality. The output voltage is constant at 400 V even if the input voltage varies from 160 to 400 V. A peak efficiency of 97.2% is achieved.

Suggested Citation

  • Xianxu Huo & Ke Xu & Ruixin Liu & Xi Chen & Zhanchun Li & Haiyun Yan, 2019. "A Structure-Reconfigurable Soft-Switching DC-DC Converter for Wide-Range Applications," Energies, MDPI, vol. 12(15), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2905-:d:252481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
    2. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2019. "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy," Energies, MDPI, vol. 12(10), pages 1-22, May.
    3. Moumita Sarkar & Müfit Altin & Poul E. Sørensen & Anca D. Hansen, 2019. "Reactive Power Capability Model of Wind Power Plant Using Aggregated Wind Power Collection System," Energies, MDPI, vol. 12(9), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cleonor C. das Neves & Walter B. Junior & Renan L. P. de Medeiros & Florindo A. C. Ayres Junior & Iury V. Bessa & Isaías V. Bessa & Gabriela de M. Veroneze & Luiz E. S. e Silva & Nei J. S. Farias, 2020. "Direct Form Digital Robust RST Control Based on Chebyshev Sphere Optimization Applied in a DC-DC Power Converter," Energies, MDPI, vol. 13(15), pages 1-22, July.
    2. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahinur Rahman & Shuhui Li & Himadry Shekhar Das & Xingang Fu & Hoyun Won & Yang-Ki Hong, 2023. "Exploring Dynamic P-Q Capability and Abnormal Operations Associated with PMSG Wind Turbines," Energies, MDPI, vol. 16(10), pages 1-21, May.
    2. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Qin Chen & Yan Chen & Xingzhi Bai, 2020. "Deterministic and Interval Wind Speed Prediction Method in Offshore Wind Farm Considering the Randomness of Wind," Energies, MDPI, vol. 13(21), pages 1-23, October.
    4. Ru Hou & Yi Yang & Qingcong Yuan & Yanhua Chen, 2019. "Research and Application of Hybrid Wind-Energy Forecasting Models Based on Cuckoo Search Optimization," Energies, MDPI, vol. 12(19), pages 1-17, September.
    5. Ming Pang & Lei Zhang & Yajun Zhang & Ao Zhou & Jianming Dou & Zhepeng Deng, 2022. "Ultra-Short-Term Wind Speed Forecasting Using the Hybrid Model of Subseries Reconstruction and Broad Learning System," Energies, MDPI, vol. 15(12), pages 1-21, June.
    6. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    7. Xin Zhao & Haikun Wei & Chenxi Li & Kanjian Zhang, 2020. "A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed," Energies, MDPI, vol. 13(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2905-:d:252481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.