IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2683-d247862.html
   My bibliography  Save this article

The Role of Supercapacitors in Regenerative Braking Systems

Author

Listed:
  • Julius Partridge

    (Department of Mechanical Engineering, University College London, London WC1E 7JE, UK)

  • Dina Ibrahim Abouelamaimen

    (Department of Mechanical Engineering, University College London, London WC1E 7JE, UK)

Abstract

A supercapacitor module was used as the energy storage system in a regenerative braking test rig to explore the opportunities and challenges of implementing supercapacitors for regenerative braking in an electric drivetrain. Supercapacitors are considered due to their excellent power density and cycling characteristics; however, the performance under regenerative braking conditions has not been well explored. Initially the characteristics of the supercapacitor module were tested, it is well known that the capacitance of a supercapacitor is highly dependent on the charge/discharge rate with a drop of up to 9% found here between the rated capacitance and the calculated value at a 100 A charge rate. It was found that the drop in capacitance was significantly reduced when a variable charge rate, representative of a regenerative braking test, was applied. It was also found that although supercapacitors have high power absorbing characteristics, the state-of-charge significantly impacts on the charging current and the power absorbing capacity of a supercapacitor-based regenerative braking system. This owed primarily to the current carrying capacity of the power electronic converters required to control the charge and discharge of the supercapacitor module and was found to be a fundamental limitation to the utilisation of supercapacitors in a regenerative braking system. In the worst cases this was found to impact upon the ability of the motor to apply the desired braking torque. Over the course of the tests carried out the overall efficiency was found to be up to 68%; however, the main source of loss was the motor. It was found that measurement of the state-of-charge using the rated capacitance significantly over-estimates the efficiency of the system.

Suggested Citation

  • Julius Partridge & Dina Ibrahim Abouelamaimen, 2019. "The Role of Supercapacitors in Regenerative Braking Systems," Energies, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2683-:d:247862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wu & Julius Partridge & Richard Bucknall, 2019. "Development and Evaluation of a Degree of Hybridisation Identification Strategy for a Fuel Cell Supercapacitor Hybrid Bus," Energies, MDPI, vol. 12(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Davalos Hernandez & Rahim Samanbakhsh & Federico Martin Ibanez & Fernando Martin, 2022. "Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter," Energies, MDPI, vol. 15(1), pages 1-19, January.
    2. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    3. Vladimir Parra-Elizondo & Ana Karina Cuentas-Gallegos & Beatriz Escobar-Morales & José Martín Baas-López & Jorge Alonso Uribe-Calderón & Daniella Esperanza Pacheco-Catalán, 2019. "Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    2. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    3. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Ilya Kulikov & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin, 2020. "Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines," Energies, MDPI, vol. 13(8), pages 1-23, April.
    5. Nicu Bizon & Valentin Alexandru Stan & Angel Ciprian Cormos, 2019. "Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus," Energies, MDPI, vol. 12(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2683-:d:247862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.