IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1974-d233613.html
   My bibliography  Save this article

Use of Waste Glass as A Replacement for Raw Materials in Mortars with a Lower Environmental Impact

Author

Listed:
  • Viviana Letelier

    (Department of Civil Engineering, Universidad de la Frontera, Av. Fco. Temuco, Salazar 01145, Chile)

  • Bastián I. Henríquez-Jara

    (Department of Civil Engineering, Universidad de la Frontera, Av. Fco. Temuco, Salazar 01145, Chile)

  • Miguel Manosalva

    (Department of Civil Engineering, Universidad de la Frontera, Av. Fco. Temuco, Salazar 01145, Chile)

  • Camila Parodi

    (Department of Civil Engineering, Universidad de la Frontera, Av. Fco. Temuco, Salazar 01145, Chile)

  • José Marcos Ortega

    (Departamento de Ingeniería Civil, Universidad de Alicante, Ap. Correos 99, 03080 Alacant/Alicante, Spain)

Abstract

Glass waste used in mortars or concretes behaves similar to cement, with resulting environmental benefits. In this light, the behavior of glass powder of various particle sizes has been analyzed as a cement replacement in mortars, in an attempt to minimize the loss of strength and durability, and maximize the amount of materials replaced. The dry density, water accessible porosity, water absorption by immersion, capillary absorption coefficient, ultrasonic pulse velocity and both compressive and flexural strengths were studied in the mortars. Furthermore, a statistical analysis of the obtained results and a greenhouse gases assessment were also performed. In view of the results obtained, glass powder of 38 microns allows up to 30% of the cement to be replaced, due to the filler effect combined with its pozzolanic activity. Moreover, it has been observed that glass powder size is one of the factors with the greatest influence among the properties of porosity, absorption and capillarity. On the other hand, in the mechanical properties, this factor does not contribute significantly more than the amount of glass powder. Finally, the greenhouse gasses analysis shows that the incorporation of glass powder reduces the CO 2 emissions associated with mortar up to 29.47%.

Suggested Citation

  • Viviana Letelier & Bastián I. Henríquez-Jara & Miguel Manosalva & Camila Parodi & José Marcos Ortega, 2019. "Use of Waste Glass as A Replacement for Raw Materials in Mortars with a Lower Environmental Impact," Energies, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1974-:d:233613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1974/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-Hoon Kang & Yang-Hee Kwon & Juhyuk Moon, 2019. "Quantitative Analysis of CO 2 Uptake and Mechanical Properties of Air Lime-Based Materials," Energies, MDPI, vol. 12(15), pages 1-12, July.
    2. Mohammed Salah Nasr & Awham Jumah Salman & Rusul Jaber Ghayyib & Ali Shubbar & Shahad Al-Mamoori & Zainab Al-khafaji & Tameem Mohammed Hashim & Zaid Ali Hasan & Monower Sadique, 2023. "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment," Energies, MDPI, vol. 16(12), pages 1-23, June.
    3. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    4. Rosa María Tremiño & Teresa Real-Herraiz & Viviana Letelier & Fernando G. Branco & José Marcos Ortega, 2021. "Effects after 1500 Hardening Days on the Microstructure and Durability-Related Parameters of Mortars Produced by the Incorporation of Waste Glass Powder as a Clinker Replacement," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    5. Mohamed Amin & Ibrahim Saad Agwa & Nuha Mashaan & Shaker Mahmood & Mahmoud H. Abd-Elrahman, 2023. "Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1974-:d:233613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.