IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p95-d193762.html
   My bibliography  Save this article

Fault-Tolerant Control of Quadcopter UAVs Using Robust Adaptive Sliding Mode Approach

Author

Listed:
  • Ngoc Phi Nguyen

    (Faculty of Mechanical and Aerospace Engineering, Sejong University, Seoul 143-747(05006), Korea)

  • Sung Kyung Hong

    (Faculty of Mechanical and Aerospace Engineering, Sejong University, Seoul 143-747(05006), Korea)

Abstract

In this paper, a fault-tolerant control method is proposed for quadcopter unmanned aerial vehicles (UAV) to account for system uncertainties and actuator faults. A mathematical model of the quadcopter UAV is first introduced when faults occur in actuators. A normal adaptive sliding mode control (NASMC) approach is proposed as a baseline controller to handle the chattering problem and system uncertainties, which does not require information of the upper bound. To improve the performance of the NASMC scheme, radial basis function neural networks are combined with an adaptive scheme to make a quick compensation in presence of system uncertainties and actuator faults. The Lyapunov theory is applied to verify the stability of the proposed methods. The effectiveness of modified ASMC algorithm is compared with that of NASMC using numerical examples under different faulty conditions.

Suggested Citation

  • Ngoc Phi Nguyen & Sung Kyung Hong, 2018. "Fault-Tolerant Control of Quadcopter UAVs Using Robust Adaptive Sliding Mode Approach," Energies, MDPI, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:95-:d:193762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Wang & Yi Shen & Xiaolei Zhang, 2014. "Actuator fault estimation for a class of nonlinear descriptor systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 487-496.
    2. Qinglei Hu & Bing Xiao, 2013. "Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2273-2286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Phi Nguyen & Nguyen Xuan Mung & Le Nhu Ngoc Thanh Ha & Tuan Tu Huynh & Sung Kyung Hong, 2020. "Finite-Time Attitude Fault Tolerant Control of Quadcopter System via Neural Networks," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    2. Mohamed Elhesasy & Tarek N. Dief & Mohammed Atallah & Mohamed Okasha & Mohamed M. Kamra & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Non-Linear Model Predictive Control Using CasADi Package for Trajectory Tracking of Quadrotor," Energies, MDPI, vol. 16(5), pages 1-17, February.
    3. Ngoc Phi Nguyen & Sung Kyung Hong, 2019. "Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs with a Total Loss of Actuator," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngoc Phi Nguyen & Sung Kyung Hong, 2019. "Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs with a Total Loss of Actuator," Energies, MDPI, vol. 12(6), pages 1-22, March.
    2. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    3. Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Boukhari, Mohamed Riad & Chaibet, Ahmed & Boukhnifer, Moussa & Glaser, Sébastien, 2019. "Two longitudinal fault tolerant control architectures for an autonomous vehicle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 236-253.
    5. Zhiyao Ma & Yongming Li & Shaocheng Tong, 2017. "Observer-based fuzzy adaptive fault control for a class of MIMO nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1331-1346, April.
    6. Ngoc Phi Nguyen & Nguyen Xuan Mung & Le Nhu Ngoc Thanh Ha & Tuan Tu Huynh & Sung Kyung Hong, 2020. "Finite-Time Attitude Fault Tolerant Control of Quadcopter System via Neural Networks," Mathematics, MDPI, vol. 8(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:95-:d:193762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.