IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2079-d162976.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A DC Short-Circuit Fault Ride Through Strategy of MMC-HVDC Based on the Cascaded Star Converter

Author

Listed:
  • Yingjie Wang

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Bo Yang

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Huifang Zuo

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Haiyuan Liu

    (School of Information and control Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Haohao Yan

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221000, China)

Abstract

A modular multilevel converter based high voltage direct current (MMC-HVDC) with DC fault self-clearing is adopted to deal with the DC short-circuit fault. However, the constant power load characteristic of the sub-modules causes capacitor voltages to diverge and the converter to go out of hot standby. To address this problem, a novel DC short-circuit fault ride through strategy is proposed. According to the polarities of grid voltages, the working or blockage of the upper and lower bridge arms is chosen according to six sections to obtain a cascaded star converter. The capacitor voltages of MMC sub-modules are maintained and balanced through the control similar to the cascaded star converter. Moreover, in order not to change zero crossing, a cluster balancing control method by scaling the amplitudes of the modulated waves is proposed to balance the capacitor voltages between phase clusters. The strategy also achieves the DC Bus line-to-line equipotential and no fault current generated. With the switches of two modes (normal operation and fault ride through operation) after the fault is cleared, the power transfer of MMC-HVDC can be recovered quickly. Finally, the effectiveness of the proposed fault ride through strategy is demonstrated on the 21-level MMC-HVDC simulation model in PSCAD/EMTDC.

Suggested Citation

  • Yingjie Wang & Bo Yang & Huifang Zuo & Haiyuan Liu & Haohao Yan, 2018. "A DC Short-Circuit Fault Ride Through Strategy of MMC-HVDC Based on the Cascaded Star Converter," Energies, MDPI, vol. 11(8), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2079-:d:162976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2079/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "A Critical Review of Modular Multilevel Converter Configurations and Submodule Topologies from DC Fault Blocking and Ride-Through Capabilities Viewpoints for HVDC Applications," Energies, MDPI, vol. 15(11), pages 1-32, June.
    2. Ui-Jin Kim & Seok-Gyu Oh, 2021. "New Sub-Module with Reverse Blocking IGBT for DC Fault Ride-Through in MMC-HVDC System," Energies, MDPI, vol. 14(6), pages 1-17, March.
    3. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Jin Zhu & Tongzhen Wei & Qunhai Huo & Jingyuan Yin, 2018. "A Full-bridge Director Switches based Multilevel Converter with DC Fault Blocking Capability and Its Predictive Control Strategy," Energies, MDPI, vol. 12(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2079-:d:162976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.