IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1224-d145673.html
   My bibliography  Save this article

A Robust Current Controller for Uncertain Permanent Magnet Synchronous Motors with a Performance Recovery Property for Electric Power Steering Applications

Author

Listed:
  • Yonghun Kim

    (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 291, Korea)

  • Hyung-Tae Seo

    (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 291, Korea)

  • Seok-Kyoon Kim

    (Department of Creative Convergence Engineering, Hanbat National University, Daejeon 341-58, Korea)

  • Kyung-Soo Kim

    (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 291, Korea)

Abstract

This paper presents a robust current tracking controller for permanent magnet synchronous motors (PMSMs) with a performance recovery property for electric power steering (EPS) applications. The contributions of this work are twofold. First, a disturbance observer (DOB) is designed to compensate the disturbances arising from the model–plant mismatches while reducing the closed-loop sensitivity. Second, a current controller is designed to improve the current tracking performance in the frequency domain by assigning the performance recovery property to the closed-loop system. The closed-loop performance is verified through simulations and experiments using a 500 W PMSM connected to an EPS system.

Suggested Citation

  • Yonghun Kim & Hyung-Tae Seo & Seok-Kyoon Kim & Kyung-Soo Kim, 2018. "A Robust Current Controller for Uncertain Permanent Magnet Synchronous Motors with a Performance Recovery Property for Electric Power Steering Applications," Energies, MDPI, vol. 11(5), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1224-:d:145673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Cheng & Le Sun & Giuseppe Buja & Lihua Song, 2015. "Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles," Energies, MDPI, vol. 8(9), pages 1-24, September.
    2. Qiang Song & Yiting Li & Chao Jia, 2018. "A Novel Direct Torque Control Method Based on Asymmetric Boundary Layer Sliding Mode Control for PMSM," Energies, MDPI, vol. 11(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. In Hyuk Kim & Young Ik Son, 2020. "Design of a Low-Order Harmonic Disturbance Observer with Application to a DC Motor Position Control," Energies, MDPI, vol. 13(5), pages 1-17, February.
    2. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    2. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    3. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    4. Ahmed Chaibet & Moussa Boukhnifer & Nadir Ouddah & Eric Monmasson, 2020. "Experimental Sensorless Control of Switched Reluctance Motor for Electrical Powertrain System," Energies, MDPI, vol. 13(12), pages 1-15, June.
    5. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    6. Feng Yu & Ming Cheng & Kwok Tong Chau & Feng Li, 2015. "Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles," Energies, MDPI, vol. 8(9), pages 1-19, September.
    7. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    8. Xiaoyuan Wang & Haiying Lv & Qiang Sun & Yanqing Mi & Peng Gao, 2017. "A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
    9. Rui Tu & Hui Yang & Heyun Lin & Hanlin Zhan & Di Wu & Minghu Yu & Liang Chen & Wenjie Chen, 2022. "Investigation of a Novel Consequent-Pole Flux-Intensifying Memory Machine," Energies, MDPI, vol. 15(15), pages 1-15, July.
    10. Changhong Jiang & Qiming Wang & Niaona Zhang & Haitao Ding, 2022. "Overcurrent Protection and Unmatched Disturbance Rejection under Non-Cascade Structure for PMSM," Energies, MDPI, vol. 15(18), pages 1-11, September.
    11. Rui Xiong & Suleiman M. Sharkh & Xi Zhang, 2018. "Research Progress on Electric and Intelligent Vehicles," Energies, MDPI, vol. 11(7), pages 1-5, July.
    12. Yuanxi Chen & Weinong Fu & Shuangxia Niu & Sigao Wang, 2023. "A Torque-Enhanced Magnetic-Geared Machine with Dual-Series-Winding and Its Design Approach for Electric Vehicle Powertrain," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    13. Jingxia Wang & Yusheng Hu & Ming Cheng & Biao Li & Bin Chen, 2020. "Bidirectional Coupling Model of Electromagnetic Field and Thermal Field Applied to the Thermal Analysis of the FSPM Machine," Energies, MDPI, vol. 13(12), pages 1-15, June.
    14. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    15. Roland Kasper & Dmytro Golovakha, 2020. "Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors," Energies, MDPI, vol. 13(23), pages 1-16, November.
    16. Lei Chen & Yulong Pei & Feng Chai & Shukang Cheng, 2016. "Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines," Energies, MDPI, vol. 9(7), pages 1-19, July.
    17. Hongye Zhang & Zezhao Wen & Francesco Grilli & Konstantinos Gyftakis & Markus Mueller, 2021. "Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines," Energies, MDPI, vol. 14(8), pages 1-39, April.
    18. Wenping Chai & Thomas A. Lipo & Byung-il Kwon, 2018. "Design and Optimization of a Novel Wound Field Synchronous Machine for Torque Performance Enhancement," Energies, MDPI, vol. 11(8), pages 1-15, August.
    19. Ik-Hyun Jo & Ju Lee & Hyung-Woo Lee & Jae-Bum Lee & Jae-Hyeon Lim & Seong-Hwi Kim & Chan-Bae Park, 2022. "A Study on MG-PMSM for High Torque Density of 45 kW–Class Tram Driving System," Energies, MDPI, vol. 15(5), pages 1-13, February.
    20. Chenyun Wu & Rabia Sehab & Ahmad Akrad & Cristina Morel, 2022. "Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains," Energies, MDPI, vol. 15(13), pages 1-7, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1224-:d:145673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.