IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p225-d127438.html
   My bibliography  Save this article

Prediction of Dissolved Gas Concentrations in Transformer Oil Based on the KPCA-FFOA-GRNN Model

Author

Listed:
  • Jun Lin

    (Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Gehao Sheng

    (Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Yingjie Yan

    (Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Jiejie Dai

    (Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Xiuchen Jiang

    (Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract

The purpose of analyzing the dissolved gas in transformer oil is to determine the transformer’s operating status and is an important basis for fault diagnosis. Accurate prediction of the concentration of dissolved gas in oil can provide an important reference for the evaluation of the state of the transformer. A combined predicting model is proposed based on kernel principal component analysis (KPCA) and a generalized regression neural network (GRNN) using an improved fruit fly optimization algorithm (FFOA) to select the smooth factor. Firstly, based on the idea of using the dissolved gas ratio of oil to diagnose the transformer fault, gas concentration ratios are also used as characteristic parameters. Secondly, the main parameters are selected from the feature parameters using the KPCA method, and the GRNN is then used to predict the gas concentration in the transformer oil. In the training process of the network, the FFOA is used to select the smooth factor of the neural network. Through a concrete example, it is shown that the method proposed in this paper has better data fitting ability and more accurate prediction ability compared with the support vector machine (SVM) and gray model (GM) methods.

Suggested Citation

  • Jun Lin & Gehao Sheng & Yingjie Yan & Jiejie Dai & Xiuchen Jiang, 2018. "Prediction of Dissolved Gas Concentrations in Transformer Oil Based on the KPCA-FFOA-GRNN Model," Energies, MDPI, vol. 11(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:225-:d:127438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/225/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    2. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    3. Hongwei Wang & Yuansheng Huang & Chong Gao & Yuqing Jiang, 2019. "Cost Forecasting Model of Transformer Substation Projects Based on Data Inconsistency Rate and Modified Deep Convolutional Neural Network," Energies, MDPI, vol. 12(16), pages 1-21, August.
    4. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    5. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    6. Minghui Ou & Hua Wei & Yiyi Zhang & Jiancheng Tan, 2019. "A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    7. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    8. Enwen Li & Linong Wang & Bin Song & Siliang Jian, 2018. "Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:225-:d:127438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.