IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1381-d111666.html
   My bibliography  Save this article

Use of Rod Compactors for High Voltage Overhead Power Lines Magnetic Field Mitigation

Author

Listed:
  • Fabio Bignucolo

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Massimiliano Coppo

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Andrea Savio

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Roberto Turri

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

Abstract

In the last decades, strengthening the high voltage transmission system through the installation of new overhead power lines has become critical, especially in highly developed areas. Present laws concerning the human exposure to electric and magnetic fields introduce constraints to be considered in both new line construction and existing systems. In the paper, a technique for passive magnetic field mitigation in areas close to overhead power lines is introduced, fully modelled and discussed through a parametric analysis. The investigated solution, which basically consists in approaching line conductors along the span making use of rod insulators, is applicable on both existing and under-design overhead lines as an alternative to other mitigating actions. Making use of a 3-dimensional representation, the procedure computes both positions of phase conductors and forces acting on insulators, towers, conductors and compactors, with the aim of evaluating the additional mechanical stress introduced by the compactors. Finally, a real case study is reported to demonstrate and quantify the benefits in terms of ground magnetic field reduction achievable by applying the proposed solution, in comparison to a traditional configuration. Furthermore, using compactors to passively reduce the magnetic field is simple to be applied, minimally invasive and quite inexpensive as regards to alternative mitigating actions.

Suggested Citation

  • Fabio Bignucolo & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Use of Rod Compactors for High Voltage Overhead Power Lines Magnetic Field Mitigation," Energies, MDPI, vol. 10(9), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1381-:d:111666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamieson, D. & Wartenberg, D., 2001. "The precautionary principle and electric and magnetic fields," American Journal of Public Health, American Public Health Association, vol. 91(9), pages 1355-1358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edoardo Alessio Piana & Fabio Bignucolo & Alberto Donini & Roberto Spezie, 2018. "Maintenance of a High-Voltage Overhead Transmission Line: Sustainability and Noise Impact Assessment," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
    2. Juan Carlos Bravo-Rodríguez & Juan Carlos del-Pino-López & Pedro Cruz-Romero, 2019. "A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      ;
      ;
      ;
      ;
      ;

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1381-:d:111666. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.