IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1982-d121085.html
   My bibliography  Save this article

Study of a Coil Heat Exchanger with an Ice Storage System

Author

Listed:
  • Yan Li

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Zhe Yan

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Chao Yang

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Bin Guo

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Han Yuan

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Jian Zhao

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Ning Mei

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

Abstract

In this study, a coil heat exchanger with an ice storage system is analyzed by theoretical analysis, numerical analysis, and experimental analysis. The dynamic characteristics of ice thickness variation is studied by means of unstable heat conduction theory in cylindrical coordinates, and the change rule of the ice layer thickness is obtained. The computational fluid dynamics method is employed to simulate the flow field and ice melting process of the coil heat exchanger. The effect of the agitator height on the flow characteristics and heat transfer characteristics is investigated. The numerical results show that the turbulence intensity of the fluid near the wall of the heat exchanger is the largest with an agitator height of 80 mm. Furthermore, the process of ice melting is analyzed. The ice on the outer side of the evaporator tube close to the container wall melts faster than the inner side and this agrees well with the experimental result. The experimental study on the process of the operational period and deicing of the coil heat exchanger is conducted and the temperature variation curves are obtained by the arrangement of thermocouples. It is found that the temperature of the evaporating tube increases with increasing height in the process of ice storage.

Suggested Citation

  • Yan Li & Zhe Yan & Chao Yang & Bin Guo & Han Yuan & Jian Zhao & Ning Mei, 2017. "Study of a Coil Heat Exchanger with an Ice Storage System," Energies, MDPI, vol. 10(12), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1982-:d:121085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergiy Filin & Iouri Semenov & Ludmiła Filina-Dawidowicz, 2021. "Multi-Agent Simulation of Iceberg Mass Loss during Its Energy-Efficient Towing for Freshwater Supply," Energies, MDPI, vol. 14(13), pages 1-16, July.
    2. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miyer Valdes & Juan G. Ardila & Dario Colorado & Beatris A. Escobedo-Trujillo, 2019. "Computational Model to Evaluate the Effect of Passive Techniques in Tube-In-Tube Helical Heat Exchanger," Energies, MDPI, vol. 12(10), pages 1-12, May.
    2. Anh Tuan Le & Liang Wang & Yang Wang & Ngoc Tuan Vu & Daoliang Li, 2020. "Experimental Validation of a Low-Energy-Consumption Heating Model for Recirculating Aquaponic Systems," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    4. Ma, Y. & Tao, Y. & Shi, L. & Liu, Q.G. & Wang, Y. & Tu, J.Y., 2021. "Investigations on the thermal performance of a novel thermal energy storage unit for poor solar conditions," Renewable Energy, Elsevier, vol. 180(C), pages 166-177.
    5. Peter Sivák & Peter Tauš & Radim Rybár & Martin Beer & Zuzana Šimková & František Baník & Sergey Zhironkin & Jana Čitbajová, 2020. "Analysis of the Combined Ice Storage (PCM) Heating System Installation with Special Kind of Solar Absorber in an Older House," Energies, MDPI, vol. 13(15), pages 1-20, July.
    6. Yingjie Zhou & Qibin Li & Qiang Wang, 2019. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study," Energies, MDPI, vol. 12(13), pages 1-9, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1982-:d:121085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.