Author
Listed:
- Sai Puppala
(Computer Science Department, Southern Illinois University, 1230 Lincoln Dr, Carbondale, IL 62901, USA)
- Koushik Sinha
(Computer Science Department, Southern Illinois University, 1230 Lincoln Dr, Carbondale, IL 62901, USA)
Abstract
The advancement of precision agriculture increasingly depends on innovative technological solutions that optimize resource utilization and minimize environmental impact. This paper introduces a novel heterogeneous federated learning architecture specifically designed for intelligent agricultural systems, with a focus on combine tractors equipped with advanced nutrient and crop health sensors. Unlike conventional FL applications, our architecture uniquely addresses the challenges of communication efficiency, dynamic network conditions, and resource allocation in rural farming environments. By adopting a decentralized approach, we ensure that sensitive data remain localized, thereby enhancing security while facilitating effective collaboration among devices. The architecture promotes the formation of adaptive clusters based on operational capabilities and geographical proximity, optimizing communication between edge devices and a global server. Furthermore, we implement a robust checkpointing mechanism and a dynamic data transmission strategy, ensuring efficient model updates in the face of fluctuating network conditions. Through a comprehensive assessment of computational power, energy efficiency, and latency, our system intelligently classifies devices, significantly enhancing the overall efficiency of federated learning processes. This paper details the architecture, operational procedures, and evaluation methodologies, demonstrating how our approach has the potential to transform agricultural practices through data-driven decision-making and promote sustainable farming practices tailored to the unique challenges of the agricultural sector.
Suggested Citation
Sai Puppala & Koushik Sinha, 2025.
"Towards Secure and Efficient Farming Using Self-Regulating Heterogeneous Federated Learning in Dynamic Network Conditions,"
Agriculture, MDPI, vol. 15(9), pages 1-38, April.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:9:p:934-:d:1642320
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:934-:d:1642320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.