Author
Listed:
- Siyi Ouyang
(Intelligent Electromechanical Equipment Innovation Research Institute, East China Jiao-Tong University, Nanchang 330013, China)
- Siwei Lv
(Intelligent Electromechanical Equipment Innovation Research Institute, East China Jiao-Tong University, Nanchang 330013, China)
- Bin Li
(Intelligent Electromechanical Equipment Innovation Research Institute, East China Jiao-Tong University, Nanchang 330013, China)
Abstract
Watermelon is a widely cultivated fruit and vegetable that is native to Africa and has become one of the world’s important summer fruits. Watermelon seed vigor has a critical impact on watermelon planting and yield, and seed water content is a key factor in maintaining vigor during seed storage and germination. In this study, reflectance and transmittance spectral data from hyperspectral imaging were fused to improve the detection accuracy of moisture content in watermelon seeds. First, watermelon seed samples with different water content gradients were prepared by dividing all 456 selected watermelon seeds into 10 groups and drying them in a drying oven at 60 °C for 0, 3, 5, 10, 15, 20, 25, 30, 40, and 50 min. Reflectance and transmission spectra of 456 watermelon seeds were collected by a hyperspectral imaging system, and the single spectral data were subsequently used to build PLSR and LSSVR models for quantitative analysis of watermelon seed moisture content. Model performance is enhanced by Competitive Adaptive Reweighted Sampling (CARS), Unrelated Variable Elimination (UVE), and primary and intermediate data fusion methods. Primary data fusion improves model predictions compared to single models based on reflectance and transmission spectra. The intermediate data fusion of the feature spectral data of reflectance and transmittance selected by the CARS algorithm improves the prediction effect of the model more obviously, in which the model with the best prediction accuracy is Raw-CRAS-LSSVR, whose R P 2 and RMSEP are 0.9149 and 0.0144, respectively, which improves the prediction effect of the model built by a single full-spectrum datum by 5.72%. This study demonstrates that hyperspectral reflectance and transmission imaging techniques combined with data fusion can effectively detect watermelon seed moisture content quickly and with high accuracy.
Suggested Citation
Siyi Ouyang & Siwei Lv & Bin Li, 2025.
"Detection of Water Content of Watermelon Seeds Based on Hyperspectral Reflection Combined with Transmission Imaging,"
Agriculture, MDPI, vol. 15(9), pages 1-16, May.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:9:p:1007-:d:1650199
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:1007-:d:1650199. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.