IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i7p795-d1629736.html
   My bibliography  Save this article

Spatiotemporal Variability and Drivers of Cropland Non-Agricultural Conversion Across Mountainous County Types: Evidence from the Qian-Gui Karst Region, China

Author

Listed:
  • Qingping Lu

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Siji Zhu

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Zhaofu Xiao

    (School of Business and Tourism Management, Yunnan University, Kunming 650500, China)

  • Guifang Zhu

    (School of History, Yunnan Normal University, Kunming 650500, China)

  • Jie Li

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Jiahao Cui

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Wen He

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Jun Sun

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

Abstract

The accelerating conversion of agricultural land to non-agricultural uses poses critical threats to food security and sustainable land management, particularly in ecologically fragile karst mountainous regions. This study investigated the spatiotemporal patterns and driving mechanisms of cropland non-agricultural conversion (CNAC) in the Qian-Gui karst region (Guangxi and Guizhou, China) from 2000 to 2020, employing land use datasets and socioeconomic indicators through geographically weighted regression (GWR) modeling. The results showed that (1) from 2000 to 2020, the CNAC rate in the Qian-Guizhou karst mountainous region reached 2.03%. The area of CNAC increased by 14.60 × 10 4 hm 2 , increasing 1.74 times in 2010–2020 compared to 2000–2010, showing a trend of rapid growth. Specifically, the growth rate of the CNAC area was the highest in apparent mountainous (110.36%) and quasi-mountainous counties (100.5%), followed by semi-mountainous counties (95.28%), while entirely mountainous (40.89%) and pure hilly counties (37.68%) experienced the lowest growth, revealing distinct regional disparities. (2) Spatially, CNAC exhibited a pattern of “high in the north and south, low in the central region”, and the overall level of CNAC displayed significant regional imbalances, with extreme grades distributed in provincial capitals, high and medium grades concentrated in prefecture-level city districts, and light and low grades mainly located in counties and districts (accounting for more than 55.56% of the total number of research units in the two time periods). (3) There was significant spatial heterogeneity in the driving effect of factors influencing CNAC. Agricultural output and population density showed the strongest positive correlations; effectively irrigated areas exhibited a growing influence over time (except for pure hilly counties); rocky desertification areas exerted a strengthened influence on CNAC in pure hilly counties, while their impact was relatively lower in other regions compared to other indicators. Therefore, when formulating policies to protect farmland, it is essential to take into account the specific conditions of different types of counties in mountainous areas and adopt management measures tailored to these regional characteristics.

Suggested Citation

  • Qingping Lu & Siji Zhu & Zhaofu Xiao & Guifang Zhu & Jie Li & Jiahao Cui & Wen He & Jun Sun, 2025. "Spatiotemporal Variability and Drivers of Cropland Non-Agricultural Conversion Across Mountainous County Types: Evidence from the Qian-Gui Karst Region, China," Agriculture, MDPI, vol. 15(7), pages 1-26, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:795-:d:1629736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/7/795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/7/795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    2. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    4. Duan Ran & Zhanlu Zhang & Yuhan Jing, 2022. "A Study on the Spatial–Temporal Evolution and Driving Factors of Non-Grain Production in China’s Major Grain-Producing Provinces," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    5. Keer Zhang & Chang Cao & Haoran Chu & Lei Zhao & Jiayu Zhao & Xuhui Lee, 2023. "Increased heat risk in wet climate induced by urban humid heat," Nature, Nature, vol. 617(7962), pages 738-742, May.
    6. Mehrabi, Zia & Delzeit, Ruth & Ignaciuk, Adriana & Levers, Christian & Braich, Ginni & Bajaj, Kushank & Amo-Aidoo, Araba & Anderson, Weston & Balgah, Roland A. & Benton, Tim G. & Chari, Martin M. & El, 2022. "Research priorities for global food security under extreme events," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(7), pages 756-766.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    2. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    3. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    4. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    5. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    6. Yang, Hao & Zou, Runyan & Hu, Yueming & Wang, Lu & Xie, Yingkai & Tan, Zhengxi & Zhu, Zhiqiang & Zhu, A.-Xing & Gong, Jianzhou & Mao, Xiaoyun, 2024. "Sustainable utilization of cultivated land resources based on "element coupling-function synergy" analytical framework: A case study of Guangdong, China," Land Use Policy, Elsevier, vol. 146(C).
    7. Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
    8. Xi Wu & Yajuan Wang & Hongbo Zhu, 2022. "Does Economic Growth Lead to an Increase in Cultivated Land Pressure? Evidence from China," Land, MDPI, vol. 11(9), pages 1-19, September.
    9. TC Chakraborty & Zander S. Venter & Matthias Demuzere & Wenfeng Zhan & Jing Gao & Lei Zhao & Yun Qian, 2024. "Large disagreements in estimates of urban land across scales and their implications," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Wang, Jieyong & Qu, Lulu & Li, Yurui & Feng, Weilun, 2023. "Identifying the structure of rural regional system and implications for rural revitalization: A case study of Yanchi County in northern China," Land Use Policy, Elsevier, vol. 124(C).
    11. Xiaobing Sun & Quanfeng Li & Xiangbin Kong & Weimin Cai & Bailin Zhang & Ming Lei, 2023. "Spatial Characteristics and Obstacle Factors of Cultivated Land Quality in an Intensive Agricultural Region of the North China Plain," Land, MDPI, vol. 12(8), pages 1-23, August.
    12. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    13. Dongdong Gao & Zeqi Wang & Xin Gao & Shunhe Chen & Rong Chen & Yuan Gao, 2024. "Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology," Sustainability, MDPI, vol. 16(10), pages 1-23, May.
    14. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Concetta Cardillo & Orlando Cimino & Marcello De Rosa & Martina Francescone, 2023. "The Evolution of Multifunctional Agriculture in Italy," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    18. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    19. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    20. Jinping Lin & Meiqi Zhou & Huasong Luo & Bowen Zhang & Jiajia Feng & Qi Yi, 2022. "Analysis of the Emotional Identification Mechanism of Campus Edible Landscape from the Perspective of Emotional Geography: An Empirical Study of a Chinese University Town," IJERPH, MDPI, vol. 19(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:795-:d:1629736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.