Author
Listed:
- Mingjie Zhang
(College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)
- Zhiqing Song
(College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)
- Bufan Li
(College of Science, Inner Mongolia University of Technology, Hohhot 010051, China)
- Chunxu Qin
(College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)
- Changjiang Ding
(College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)
- Liqiang Liu
(College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)
Abstract
Oat grass is a high-quality forage with exceptional nutritional value and quality. Freshly harvested oat grass requires rapid drying to extend its shelf life. Currently, the primary methods for drying oat grass are natural air drying (AD) and hot air drying (HAD). However, prolonged drying times or elevated temperatures can lead to a degradation in hay quality. To address this issue, in this study, we employed a novel non-thermal drying technology—high-voltage discharge plasma drying (HVDPD)—to dry oat grass. The HVDPD device adopted a multi-needle plate electrode system, with a high-voltage power output of 50 Hz AC and a voltage set to 35 kV. The distance between the needle tip and the plate was set to 10 cm, while the spacing between the needles was adjusted only to three gradients of 2 cm, 8 cm, and 12 cm. To investigate the effects of HVDPD, HAD, and AD on the volatile compounds and textural characteristics of oat grass, in this study, we employed gas chromatography–mass spectrometry (GC-MS) for qualitative and quantitative analyses of the primary volatile components in oat hay. The texture characteristics were determined using texture profile analysis (TPA) and shear testing. A total of 103 volatile substances were detected in oat grass. We categorized them into the following: 28 types of alkanes, 17 types of alkenes, 8 types of esters, 11 types of ketones, 13 types of aldehydes, 20 types of alcohols, and 6 other classes of compounds. We found that the HVDPD group demonstrated significant advantages in enhancing the volatile flavor and palatability of oat grass. The results of the textural properties showed that the structure of oat grass treated with HVDPD was significantly softer, with the 2 cm needle-spacing group exhibiting superior quality and palatability. Overall, this research demonstrates the significant advantages of HVDPD for drying oat grass, providing an important reference for its application in the field of drying technology.
Suggested Citation
Mingjie Zhang & Zhiqing Song & Bufan Li & Chunxu Qin & Changjiang Ding & Liqiang Liu, 2025.
"Study on the Effects of High-Voltage Discharge Plasma Drying on the Volatile Organic Compounds and Texture Characteristics of Oat Grass,"
Agriculture, MDPI, vol. 15(5), pages 1-19, February.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:5:p:468-:d:1597091
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:5:p:468-:d:1597091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.