IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i19p2099-d1767610.html
   My bibliography  Save this article

Comparative Analysis of Static Rollover Stability Between Conventional and Electric Tractor

Author

Listed:
  • Juhee Lee

    (Department of Smart Bio-Industrial Mechanical Engineering, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Seokho Kang

    (Upland-Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Yujin Han

    (Upland-Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Jinho Son

    (Department of Smart Bio-Industrial Mechanical Engineering, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Yushin Ha

    (Department of Smart Bio-Industrial Mechanical Engineering, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
    Upland-Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea)

Abstract

As the development of electric tractors progresses, battery systems have become a key component, accounting for a significant portion of the vehicle’s total weight. With rollover accidents remaining a leading cause of fatal injuries in agricultural machinery, the stability of electric tractors is drawing increasing attention. In particular, battery placement may critically affect the overall mass distribution and rollover behavior, highlighting the need for safety-focused design optimization. This study evaluates the static rollover stability of a 55 kW electric tractor by analyzing the effect of battery mounting position and comparing it with a conventional tractor. Three tractor models were considered: an electric tractor with a front-mounted battery, one with a center-mounted battery, and a conventional tractor. Multibody dynamic simulations were conducted using RecurDyn, and a total of 24 orientations, at 15° intervals, were simulated to determine the tipping angles in all directions. The results revealed that battery placement had a significant impact on rollover stability. The front-mounted battery type exhibited up to 30% higher tipping angles than the conventional tractor in the forward pitch direction near 90°, indicating improved stability. In contrast, the center-mounted battery type showed a tipping angle distribution generally similar to that of the conventional tractor, with smaller variations across directions. These findings demonstrate the influence of mass distribution on rollover safety and provide valuable insight for structural design of electric tractors.

Suggested Citation

  • Juhee Lee & Seokho Kang & Yujin Han & Jinho Son & Yushin Ha, 2025. "Comparative Analysis of Static Rollover Stability Between Conventional and Electric Tractor," Agriculture, MDPI, vol. 15(19), pages 1-15, October.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2099-:d:1767610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/19/2099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/19/2099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Pascuzzi & Katarzyna Łyp-Wrońska & Katarzyna Gdowska & Francesco Paciolla, 2024. "Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    2. Xiaoting Deng & Hailong Sun & Zhixiong Lu & Zhun Cheng & Yuhui An & Hao Chen, 2022. "Research on Dynamic Analysis and Experimental Study of the Distributed Drive Electric Tractor," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    3. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    4. Yung-Chuan Chen & Li-Wen Chen & Ming-Yen Chang, 2022. "A Design of an Unmanned Electric Tractor Platform," Agriculture, MDPI, vol. 12(1), pages 1-19, January.
    5. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    6. Jinho Son & Yeongsu Kim & Seokho Kang & Yushin Ha, 2024. "Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis," Agriculture, MDPI, vol. 14(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoxian Zhang & Jun Li & Chuxi Li & Peihan Lin & Linlin Shi & Boyi Xiao, 2025. "Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques," Agriculture, MDPI, vol. 15(18), pages 1-30, September.
    2. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    3. Yifei Yang & Yifang Wen & Xiaodong Sun & Renzhong Wang & Ziyin Dong, 2025. "A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors," Energies, MDPI, vol. 18(13), pages 1-23, June.
    4. Yu Duan & Željko Stević & Boris Novarlić & Sarfaraz Hashemkhani Zolfani & Ömer Faruk Görçün & Marko Subotić, 2025. "Application of the Fuzzy MCDM Model for the Selection of a Multifunctional Machine for Sustainable Waste Management," Sustainability, MDPI, vol. 17(6), pages 1-28, March.
    5. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    6. Liyou Xu & Shuailong Hou & Yanying Li & Shenghui Lei & Mengnan Liu, 2025. "Optimization Design and Experimental Verification of the Hydrogen-Powered Self-Propelled Plant Protection Machine," Energies, MDPI, vol. 18(18), pages 1-18, September.
    7. Mustafa Ucgul & Chung-Liang Chang, 2023. "Design and Application of Agricultural Equipment in Tillage Systems," Agriculture, MDPI, vol. 13(4), pages 1-3, March.
    8. Mingzhu Zhang & Ningning Wang & Sikang Zhou, 2025. "Research on Fuel Economy of Hydro-Mechanical Continuously Variable Transmission Rotary-Tilling Tractor," Energies, MDPI, vol. 18(6), pages 1-20, March.
    9. Xiaoting Deng & Hailong Sun & Zhixiong Lu & Zhun Cheng & Yuhui An & Hao Chen, 2022. "Research on Dynamic Analysis and Experimental Study of the Distributed Drive Electric Tractor," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    10. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    11. Kai Zhang & Xiaoting Deng & Zhixiong Lu & Tao Wang, 2024. "Research on the Energy Management Strategy of a Hybrid Tractor OS-ECVT Based on a Dynamic Programming Algorithm," Agriculture, MDPI, vol. 14(9), pages 1-20, September.
    12. Chandrasekhar Reddy Gade & Razia Sultana Wahab, 2023. "Conceptual Framework for Modelling of an Electric Tractor and Its Performance Analysis Using a Permanent Magnet Synchronous Motor," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    13. Salvatore Martelli & Valerio Martini & Francesco Mocera & Aurelio Soma’, 2024. "Life Cycle Assessment Comparison of Orchard Tractors Powered by Diesel and Hydrogen Fuel Cell," Energies, MDPI, vol. 17(18), pages 1-29, September.
    14. Simone Pascuzzi & Katarzyna Łyp-Wrońska & Katarzyna Gdowska & Francesco Paciolla, 2024. "Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    15. Yung-Chuan Chen & Li-Wen Chen & Ming-Yen Chang, 2022. "A Design of an Unmanned Electric Tractor Platform," Agriculture, MDPI, vol. 12(1), pages 1-19, January.
    16. Shuai Zhang & Weizhen Wei & Xiaoliang Chen & Liyou Xu & Yuntao Cao, 2022. "Vibration Performance Analysis and Multi-Objective Optimization Design of a Tractor Scissor Seat Suspension System," Agriculture, MDPI, vol. 13(1), pages 1-28, December.
    17. Yifan Zhao & Liyou Xu & Chenhui Zhao & Haigang Xu & Xianghai Yan, 2024. "Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC," Energies, MDPI, vol. 17(16), pages 1-22, August.
    18. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    19. Karolina Sokal & Magdalena Kachel, 2025. "Impact of Agriculture on Greenhouse Gas Emissions—A Review," Energies, MDPI, vol. 18(9), pages 1-37, April.
    20. Matteo Berto & Matteo Beligoj & Luigi Alberti, 2025. "Quasi-Static Tractor Implement Model for Assessing Energy Savings in Partial Electrification," Energies, MDPI, vol. 18(11), pages 1-17, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2099-:d:1767610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.