Author
Listed:
- Kun Cheng
(College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China)
- Xingyang Zhang
(School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China)
- Nan Sun
(School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China
Heilongjiang Academy of Environmental Sciences Postdoctoral Joint Scientific Research Station, Harbin 150030, China)
Abstract
Evaluating regional water resource carrying capacity (WRCC) helps alleviate regional water supply–demand conflicts. This study constructed a 17-indicator system for evaluating WRCC in Major Grain-Producing Areas (MGPAs) based on the “production–living–ecology” functional perspective. It employed a combined Entropy Weight–Root Mean Square Deviation–CRITIC weighting approach with a BP neural network model to conduct a comprehensive assessment of WRCC across 13 MGPAs from 2004 to 2023. The results demonstrated the following: (1) Both MGPAs and the national level exhibit a “ecology dominance–living secondary–production weakness” pattern in functional weighting. (2) WRCC in MGPAs is characterized by agricultural production dominance, basic domestic needs as the core, and localized ecological protection as the focus—significantly differing from the national pattern of industrial-driven, economically interconnected, and trans-regional ecological concerns. (3) Spatiotemporally, WRCC levels across the 13 provinces have consistently increased, with a spatial distribution characterized by “higher in the north, lower in the south.” These findings reveal that water resource management in MGPAs requires strategies distinct from national approaches, emphasizing agricultural water conservation and efficiency alongside localized ecological protection. This provides precise policy tools and scientific decision support for implementing water-based production quotas and coordinating food security with water resource security in these regions.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2074-:d:1764106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.