IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i19p2058-d1761851.html

An Efficient Method for Retrieving Citrus Orchard Evapotranspiration Based on Multi-Source Remote Sensing Data Fusion from Unmanned Aerial Vehicles

Author

Listed:
  • Zhiwei Zhang

    (College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
    These authors contributed equally to this work.)

  • Weiqi Zhang

    (College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
    These authors contributed equally to this work.)

  • Chenfei Duan

    (Hebei Key Laboratory of Smart Water Conservancy, Hebei University of Engineering, Handan 056038, China)

  • Shijiang Zhu

    (College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China)

  • Hu Li

    (College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China)

Abstract

Severe water scarcity has become a critical constraint to global agricultural development. Enhancing both the timeliness and accuracy of crop evapotranspiration ( ET c ) retrieval is essential for optimizing irrigation scheduling. Addressing the limitations of conventional ground-based point-source measurements in rapidly acquiring two-dimensional ET c information at the field scale, this study employed unmanned aerial vehicle (UAV) remote sensing equipped with multispectral and thermal infrared sensors to obtain high spatiotemporal resolution imagery of a representative citrus orchard (Citrus reticulata Blanco cv. ‘Yichangmiju’) in western Hubei at different phenological stages. In conjunction with meteorological data (air temperature, daily net radiation, etc.), ET c was retrieved using two established approaches: the Seguin-Itier (S-I) model, which relates canopy–air temperature differences to ET c , and the multispectral-driven single crop coefficient method, which estimates ET c by combining vegetation indices with reference evapotranspiration. The thermal-infrared-driven S-I model, which relates canopy–air temperature differences to ET c , and the multispectral-driven single crop coefficient method, which estimates ET c by combining vegetation indices with reference evapotranspiration. The findings indicate that: (1) both the S-I model and the single crop coefficient method achieved satisfactory ET c estimation accuracy, with the latter performing slightly better (accuracy of 80% and 85%, respectively); (2) the proposed multi-source fusion model consistently demonstrated high accuracy and stability across all phenological stages (R 2 = 0.9104, 0.9851, and 0.9313 for the fruit-setting, fruit-enlargement, and coloration–sugar-accumulation stages, respectively; all significant at p < 0.01), significantly enhancing the precision and timeliness of ET c retrieval; and (3) the model was successfully applied to ET c retrieval during the main growth stages in the Cangwubang citrus-producing area of Yichang, providing practical support for irrigation scheduling and water resource management at the regional scale. This multi-source fusion approach offers effective technical support for precision irrigation control in agriculture and holds broad application prospects.

Suggested Citation

  • Zhiwei Zhang & Weiqi Zhang & Chenfei Duan & Shijiang Zhu & Hu Li, 2025. "An Efficient Method for Retrieving Citrus Orchard Evapotranspiration Based on Multi-Source Remote Sensing Data Fusion from Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 15(19), pages 1-27, September.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2058-:d:1761851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/19/2058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/19/2058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Zhan & Xiaoyi Zhan & Min Wu, 2025. "Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption," Land, MDPI, vol. 14(7), pages 1-20, July.
    2. Eduardo Fernández-Echeverría & Marieli Lavoignet-Ruiz & Luis Enrique García-Santamaría & Gregorio Fernández-Lambert & Loecelia Ruvalcaba-Sánchez & Horacio Bautista-Santos & Fabiola Sánchez-Galván & Ya, 2024. "Management of Citrus Cultivation in Emerging Rural Communities in Mexico: Practices and Challenges in the Central-Northern Region of Veracruz," Sustainability, MDPI, vol. 16(20), pages 1-21, October.
    3. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Yingzheng Yan & Liupeng Chen & Ziwei Zhou & Yuanzhu Wei, 2025. "Digital financial inclusion and agricultural modernization development in China—a study based on the perspective of agricultural mechanization services," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-11, December.
    5. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    6. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    7. Montazar, Aliasghar & Faber, Ben & Corwin, Dennis & Pourreza, Alireza & Snyder, Richard L., 2025. "Quantifying evapotranspiration and crop coefficients of California 'Hass' avocado affected by various environmental and plant factors," Agricultural Water Management, Elsevier, vol. 313(C).
    8. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Liu, Yutong & Lu, Yili & Sadeghi, Morteza & Horton, Robert & Ren, Tusheng, 2024. "Measurement and estimation of evapotranspiration in a maize field: A new method based on an analytical water flux model," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    8. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    10. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    11. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    12. Yang, Yanmin & Yang, Yonghui & Han, Shumin & Li, Huilong & Wang, Lu & Ma, Qingtao & Ma, Lexin & Wang, Linna & Hou, Zhenjun & Chen, Li & Liu, De Li, 2023. "Comparison of water-saving potential of fallow and crop change with high water-use winter-wheat – summer-maize rotation," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    14. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    15. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    17. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
    18. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    19. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2058-:d:1761851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.