Author
Listed:
- Abdelrahim Salih
(Department of Geography, College of Arts, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)
- Abdalhaleem Hassaballa
(Department of Environment & Natural Agricultural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)
- Abbas E. Rahma
(Department of Environment & Natural Agricultural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2043-:d:1761105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.