Author
Listed:
- Lijun Gao
(College of Information Engineering, Tarim University, Alar 843300, China)
- Tiantian Ran
(College of Life Science and Technology, Tarim University, Alar 843300, China)
- Hua Zou
(School of Computer Science, Wuhan University, Wuhan 430072, China)
- Huanhuan Wu
(College of Information Engineering, Tarim University, Alar 843300, China
Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Alar 843300, China
Key Laboratory of Modern Agricultural Engineering, Tarim University, Alar 843300, China)
Abstract
Cotton leaf disease detection is essential for accurate identification and timely management of diseases. It plays a crucial role in enhancing cotton yield and quality while promoting the advancement of intelligent agriculture and efficient crop harvesting. This study proposes a novel method for detecting cotton leaf diseases based on large language model (LLM)-generated image synthesis and an improved DEMM-YOLO model, which is enhanced from the YOLOv11 model. To address the issue of insufficient sample data for certain disease categories, we utilize OpenAI’s DALL-E image generation model to synthesize images for low-frequency diseases, which effectively improves the model’s recognition ability and generalization performance for underrepresented classes. To tackle the challenges of large-scale variations and irregular lesion distribution, we design a multi-scale feature aggregation module (MFAM). This module integrates multi-scale semantic information through a lightweight, multi-branch convolutional structure, enhancing the model’s ability to detect small-scale lesions. To further overcome the receptive field limitations of traditional convolution, we propose incorporating a deformable attention transformer (DAT) into the C2PSA module. This allows the model to flexibly focus on lesion areas amidst complex backgrounds, improving feature extraction and robustness. Moreover, we introduce an enhanced efficient multi-dimensional attention mechanism (EEMA), which leverages feature grouping, multi-scale parallel learning, and cross-space interactive learning strategies to further boost the model’s feature expression capabilities. Lastly, we replace the traditional regression loss with the MPDIoU loss function, enhancing bounding box accuracy and accelerating model convergence. Experimental results demonstrate that the proposed DEMM-YOLO model achieves 94.8% precision, 93.1% recall, and 96.7% mAP@0.5 in cotton leaf disease detection, highlighting its strong performance and promising potential for real-world agricultural applications.
Suggested Citation
Lijun Gao & Tiantian Ran & Hua Zou & Huanhuan Wu, 2025.
"Cotton Leaf Disease Detection Using LLM-Synthetic Data and DEMM-YOLO Model,"
Agriculture, MDPI, vol. 15(15), pages 1-24, August.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:15:p:1712-:d:1720029
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1712-:d:1720029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.