Author
Listed:
- Ying Chen
(School of Resources and Environment, Southwest University, Chongqing 400715, China)
- Ya Zhang
(Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, China)
- Hanqing Li
(Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, China)
- Shiqiang Wei
(School of Resources and Environment, Southwest University, Chongqing 400715, China)
Abstract
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable soils, including acidic, neutral, and calcareous purple soils and calcareous yellow soil (APS, NPS, CPS, and CYS), were sampled from Chongqing, China, for aggregate separation and determination of the total Cd(T-Cd) distribution, fractionation, and extractability in various-sized aggregates. A pot experiment with ryegrass ( Lolium perenne L.) was conducted to evaluate the Cd bioavailability in bulk soils as influenced by aggregates. The results show that the composition of soil aggregates varies a lot among soils: lower soil pH tends to increase the proportion of macroaggregates while decreasing that of smaller aggregates. The Cd distribution, HCl-extractability, and active fraction (AF, T-Cd/HCl-Cd) in aggregates are all soil type-dependent, with pH and particle size being the main determining factors; the distribution pattern of Cd concentrated in smaller aggregates is only found for CPS and CYS (pH > 7.5) upon exogenous Cd addition, though the finest aggregates (silt–clay, <0.053 mm) consistently exhibited the highest Cd enrichment for all tested soils. The Cd extractability and AF values in all aggregates show a sequence of APS > NPS > CPS > CYS, indicating the fundamental influence of soil pH on Cd availability. Higher AF values over bulk soils, either in silt–clay aggregates or in microaggregates (0.053–0.25 mm), whereas lower AF in macroaggregates (1–2 mm) are found for APS and NPS, which correspond to the relative portions of Ex-Cd and Fe/Mn oxide-bound Cd (Fe/Mn-Cd) in these aggregates. In contrast, less variation of AF values among aggregates is observed for CPS and CYS and for APS/NPS upon Cd addition. Pot experiments demonstrated strong positive correlations between ryegrass Cd uptake and HCl-Cd in silt–clay aggregates and T-Cd in microaggregates, while a negative correlation was observed with T-Cd in macroaggregates. These findings supply new insight into the mechanisms of aggregates in controlling Cd bioavailability in bulk soils and shed light on the development of new strategies for remediating Cd-polluted soils.
Suggested Citation
Ying Chen & Ya Zhang & Hanqing Li & Shiqiang Wei, 2025.
"Distribution Characteristics of Cadmium in Soil Aggregates and Their Regulating Effects on Cd Bioavailability,"
Agriculture, MDPI, vol. 15(14), pages 1-18, July.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:14:p:1514-:d:1700901
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1514-:d:1700901. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.