IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i13p1453-d1695556.html
   My bibliography  Save this article

Estimation of Available Phosphorus Under Phosphorus Fertilization in Paddy Fields of a Cold Region Using Several Extraction Methods: A Case Study from Yamagata, Japan

Author

Listed:
  • Shuhei Tsumuraya

    (Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka 997-8555, Japan)

  • Hisashi Nasukawa

    (Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan)

  • Ryosuke Tajima

    (Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan)

Abstract

Assessing available phosphorus (P) in paddy fields is challenging due to waterlogging-induced reducing conditions. This study tested the applicability of the Truog, Bray 2, and Mehlich 3 extraction methods in both air-dried and incubated soils, as well as the ascorbic-acid-reduced Bray 2 (AR Bray 2), which simulates reducing conditions, for evaluating rice growth under P fertilization. In addition, to investigate the chemical characteristics of the extraction methods, active Al and Fe and P sequential extractions were measured. Soil samples from four representative regions in Yamagata Prefecture were used. Pot cultivation tests using ‘Haenuki’ and ‘Tsuyahime’ cultivars were conducted with varying P fertilizer levels. Variations in P availability across soil types were influenced by levels of active Al and Fe. Sequential extractions identified NaHCO 3 -P and NaOH-P fractions as important for P availability. Bray 2 in both soils and AR Bray 2 were the most effective methods, showing a strong saturating exponential correlation with rice growth and P uptake, whereas Mehlich 3 and Truog showed weaker correlations. Bray 2 and AR Bray 2 show potential but require further evaluation for practical application due to the small number of soils. Future efforts should prioritize developing methods that account for P dynamics under reducing conditions, thereby improving P management strategies and supporting sustainable rice production.

Suggested Citation

  • Shuhei Tsumuraya & Hisashi Nasukawa & Ryosuke Tajima, 2025. "Estimation of Available Phosphorus Under Phosphorus Fertilization in Paddy Fields of a Cold Region Using Several Extraction Methods: A Case Study from Yamagata, Japan," Agriculture, MDPI, vol. 15(13), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:13:p:1453-:d:1695556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/13/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/13/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Kulhánek & J. Balík & J. Černý & V. Vaněk, 2009. "Evaluation of phosphorus mobility in soil using different extraction methods," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(7), pages 267-272.
    2. R. Wuenscher & H. Unterfrauner & R. Peticzka & F. Zehetner, 2015. "A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(2), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin KULHÁNEK & Jindřich ČERNÝ & Jiří BALÍK & Ondřej SEDLÁŘ & Pavel SURAN, 2018. "Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(9), pages 455-462.
    2. Franz ZEHETNER & Rosemarie WUENSCHER & Robert PETICZKA & Hans UNTERFRAUNER, 2018. "Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 192-201.
    3. L. Strnad & M. Hejcman & V. Křišťálová & P. Hejcmanová & V. Pavlů, 2010. "Mechanical weeding of Rumex obtusifolius L. under different N, P and K availabilities in permanent grassland," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(8), pages 393-399.
    4. Klaus A. JAROSCH & Jakob SANTNER & Mohammed Masud PARVAGE & Martin Hubert GERZABEK & Franz ZEHETNER & Holger KIRCHMANN, 2018. "Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experiment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(9), pages 441-447.
    5. R. Wuenscher & H. Unterfrauner & R. Peticzka & F. Zehetner, 2015. "A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(2), pages 86-96.
    6. M. Káš & G. Mühlbachová & H. Kusá & M. Pechová, 2016. "Soil phosphorus and potassium availability in long-term field experiments with organic and mineral fertilization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(12), pages 558-565.
    7. J. Skládanka & V. Adam & P. Ryant & P. Doležal & Z. Havlíček, 2010. "Can Festulolium, Dactylis glomerata and Arrhenatherum elatius be used for extension of the autumn grazing season in Central Europe?," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 488-498.
    8. Martin Kulhánek & Jindřich Černý & Jiří Balík & Ondřej Sedlář & Filip Vašák, 2019. "Changes of soil bioavailable phosphorus content in the long-term field fertilizing experiment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(4), pages 240-245.
    9. M. Kulhánek & J. Balík & J. Černý & F. Vašák & Š. Shejbalová, 2014. "Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(4), pages 151-157.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:13:p:1453-:d:1695556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.