Author
Listed:
- Xi Kang
(School of Computing and Data Engineering, NingboTech University, Ningbo 315100, China)
- Junjie Liang
(School of Computing and Data Engineering, NingboTech University, Ningbo 315100, China)
- Qian Li
(Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing 100083, China)
- Gang Liu
(Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing 100083, China)
Abstract
Lameness significantly compromises dairy cattle welfare and productivity. Early detection enables prompt intervention, enhancing both animal health and farm efficiency. Current computer vision approaches often rely on isolated lameness feature quantification, disregarding critical interdependencies among gait parameters. This limitation is exacerbated by the distinct kinematic patterns exhibited across lameness severity grades, ultimately reducing detection accuracy. This study presents an integrated computer vision and deep-learning framework for dairy cattle lameness detection and severity classification. The proposed system comprises (1) a Cow Lameness Feature Map (CLFM) model extracting holistic gait kinematics (hoof trajectories and dorsal contour) from walking sequences, and (2) a DenseNet-Integrated Convolutional Attention Module (DCAM) that mitigates inter-individual variability through multi-feature fusion. Experimental validation utilized 3150 annotated lameness feature maps derived from 175 Holsteins under natural walking conditions, demonstrating robust classification performance. The classification accuracy of the method for varying degrees of lameness was 92.80%, the sensitivity was 89.21%, and the specificity was 94.60%. The detection of healthy and lameness dairy cows’ accuracy was 99.05%, the sensitivity was 100%, and the specificity was 98.57%. The experimental results demonstrate the advantage of implementing lameness severity-adaptive feature weighting through hierarchical network architecture.
Suggested Citation
Xi Kang & Junjie Liang & Qian Li & Gang Liu, 2025.
"Detecting Lameness in Dairy Cows Based on Gait Feature Mapping and Attention Mechanisms,"
Agriculture, MDPI, vol. 15(12), pages 1-16, June.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:12:p:1276-:d:1678365
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:12:p:1276-:d:1678365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.