IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p914-d1129620.html
   My bibliography  Save this article

An Improved Mask RCNN Model for Segmentation of ‘Kyoho’ ( Vitis labruscana ) Grape Bunch and Detection of Its Maturity Level

Author

Listed:
  • Yane Li

    (College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
    Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China
    China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China
    These authors contributed equally to this work.)

  • Ying Wang

    (College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
    Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China
    China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China
    These authors contributed equally to this work.)

  • Dayu Xu

    (College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China)

  • Jiaojiao Zhang

    (College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China)

  • Jun Wen

    (Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA)

Abstract

The ‘Kyoho’ ( Vitis labruscana ) grape is one of the mainly fresh fruits; it is important to accurately segment the grape bunch and to detect its maturity level for the construction of an intelligent grape orchard. Grapes in the natural environment have different shapes, occlusion, complex backgrounds, and varying illumination; this leads to poor accuracy in grape maturity detection. In this paper, an improved Mask RCNN-based algorithm was proposed by adding attention mechanism modules to establish a grape bunch segmentation and maturity level detection model. The dataset had 656 grape bunches of different backgrounds, acquired from a grape growing environment of natural conditions. This dataset was divided into four groups according to maturity level. In this study, we first compared different grape bunch segmentation and maturity level detection models established with YoloV3, Solov2, Yolact, and Mask RCNN to select the backbone network. By comparing the performances of the different models established with these methods, Mask RCNN was selected as the backbone network. Then, three different attention mechanism modules, including squeeze-and-excitation attention (SE), the convolutional block attention module (CBAM), and coordinate attention (CA), were introduced to the backbone network of the ResNet50/101 in Mask RCNN, respectively. The results showed that the mean average precision ( mAP ) and mAP 0.75 and the average accuracy of the model established with ResNet101 + CA reached 0.934, 0.891, and 0.944, which were 6.1%, 4.4%, and 9.4% higher than the ResNet101-based model, respectively. The error rate of this model was 5.6%, which was less than the ResNet101-based model. In addition, we compared the performances of the models established with MASK RCNN, adding different attention mechanism modules. The results showed that the mAP and mAP 0.75 and the accuracy for the Mask RCNN50/101 + CA-based model were higher than those of the Mask RCNN50/101 + SE- and Mask RCNN50/101 + CBAM-based models. Furthermore, the performances of the models constructed with different network layers of ResNet50- and ResNet101-based attention mechanism modules in a combination method were compared. The results showed that the performance of the ResNet101-based combination with CA model was better than the ResNet50-based combination with CA model. The results showed that the proposed model of Mask RCNN ResNet101 + CA was good for capturing the features of a grape bunch. The proposed model has practical significance for the segmentation of grape bunches and the evaluation of the grape maturity level, which contributes to the construction of intelligent vineyards.

Suggested Citation

  • Yane Li & Ying Wang & Dayu Xu & Jiaojiao Zhang & Jun Wen, 2023. "An Improved Mask RCNN Model for Segmentation of ‘Kyoho’ ( Vitis labruscana ) Grape Bunch and Detection of Its Maturity Level," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:914-:d:1129620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    2. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ange Lu & Lingzhi Ma & Hao Cui & Jun Liu & Qiucheng Ma, 2023. "Instance Segmentation of Lotus Pods and Stalks in Unstructured Planting Environment Based on Improved YOLOv5," Agriculture, MDPI, vol. 13(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Jia & Xueqin Jiang & Zhiyong Li & Jiong Mu & Yuchao Wang & Yupeng Niu, 2023. "Application of Deep Learning in Image Recognition of Citrus Pests," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    2. Bashar Igried & Shadi AlZu’bi & Darah Aqel & Ala Mughaid & Iyad Ghaith & Laith Abualigah, 2023. "An Intelligent and Precise Agriculture Model in Sustainable Cities Based on Visualized Symptoms," Agriculture, MDPI, vol. 13(4), pages 1-20, April.
    3. Yanlei Xu & Zhiyuan Gao & Yuting Zhai & Qi Wang & Zongmei Gao & Zhao Xu & Yang Zhou, 2023. "A CNNA-Based Lightweight Multi-Scale Tomato Pest and Disease Classification Method," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    4. Yanxin Hu & Gang Liu & Zhiyu Chen & Jiaqi Liu & Jianwei Guo, 2023. "Lightweight One-Stage Maize Leaf Disease Detection Model with Knowledge Distillation," Agriculture, MDPI, vol. 13(9), pages 1-22, August.
    5. Ewa Ropelewska & Dorota E. Kruczyńska & Ahmed M. Rady & Krzysztof P. Rutkowski & Dorota Konopacka & Karolina Celejewska & Monika Mieszczakowska-Frąc, 2023. "Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning," Agriculture, MDPI, vol. 13(3), pages 1-16, February.
    6. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    7. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    8. Mohammed Al-Naeem & M M Hafizur Rahman & Anuradha Banerjee & Abu Sufian, 2023. "Support Vector Machine-Based Energy Efficient Management of UAV Locations for Aerial Monitoring of Crops over Large Agriculture Lands," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    9. Ali Hakem Alsaeedi & Ali Mohsin Al-juboori & Haider Hameed R. Al-Mahmood & Suha Mohammed Hadi & Husam Jasim Mohammed & Mohammad R. Aziz & Mayas Aljibawi & Riyadh Rahef Nuiaa, 2023. "Dynamic Clustering Strategies Boosting Deep Learning in Olive Leaf Disease Diagnosis," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    10. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    11. Yujia Zhang & Luteng Zhong & Yu Ding & Hongfeng Yu & Zhaoyu Zhai, 2023. "ResViT-Rice: A Deep Learning Model Combining Residual Module and Transformer Encoder for Accurate Detection of Rice Diseases," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    12. Irtiqa Malik & Muneeb Ahmed & Yonis Gulzar & Sajad Hassan Baba & Mohammad Shuaib Mir & Arjumand Bano Soomro & Abid Sultan & Osman Elwasila, 2023. "Estimation of the Extent of the Vulnerability of Agriculture to Climate Change Using Analytical and Deep-Learning Methods: A Case Study in Jammu, Kashmir, and Ladakh," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    13. Yonis Gulzar, 2023. "Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique," Sustainability, MDPI, vol. 15(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:914-:d:1129620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.