IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p104-d1019673.html
   My bibliography  Save this article

Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts

Author

Listed:
  • Yang Jiang

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Yurong Tang

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Wen Li

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Yong Zeng

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Xiaolong Li

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Yang Liu

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Hong Zhang

    (College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

Abstract

Simulation can be used to visualize the mechanical classification of walnuts. It can collect microscopic information about walnuts in the classification roller and guide its optimization design. In this process, simulation parameters are essential factors that ensure the effectiveness of the simulation. In this study, the crucial parameters of thin-skinned walnut particles in classification simulation were determined by combining the discrete element method (DEM) and physical tests. Firstly, the moisture content, shear modulus, stacking angle, and some contact parameters in the shell and kernel were obtained by drying test, compression test, cylinder lifting test, and physical test of contact parameters, respectively. A walnut model was constructed using reverse modeling technology. Then, the ranges of the rest contact parameters were determined using simulation inversion based on the Generic EDEM Material Model database. Second, the parameters significantly influencing the stacking angle were screened via the Plackett–Burman test using contact parameters as factors and stacking angle as the index. The results revealed that the walnut–walnut static friction coefficient, walnut–walnut rolling friction coefficient, and walnut–steel plate static friction coefficient significantly affect the stacking angle. The steepest ascent experiment produced the optimal value intervals of crucial parameters. Besides, a quadratic regression model of important parameters was built using the Box–Behnken test to achieve the optimal parameter combination. The stacking and classification experiments verified that the stacking angle and morphology are mostly similar under calibration parameters without any considerable differences. The relative error was only 0.068%. Notably, the relative error of the average staying time of walnut in the classification roller was 0.671%, and the dimensionless distribution curves of stay time were consistent. This study provides technological support to the simulation analysis of walnut classification and recommends novel methods and references to determine the parameters of other shell materials.

Suggested Citation

  • Yang Jiang & Yurong Tang & Wen Li & Yong Zeng & Xiaolong Li & Yang Liu & Hong Zhang, 2022. "Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:104-:d:1019673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong Zhang & Hualong Liu & Yong Zeng & Yurong Tang & Zhaoguo Zhang & Ji Che, 2022. "Design and Performance Evaluation of a Multi-Point Extrusion Walnut Cracking Device," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    2. Dongxu Yan & Jianqun Yu & Yang Wang & Long Zhou & Ye Tian & Na Zhang, 2022. "Soil Particle Modeling and Parameter Calibration Based on Discrete Element Method," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    3. Hongbo Zhao & Yuxiang Huang & Zhengdao Liu & Wenzheng Liu & Zhiqi Zheng, 2021. "Applications of Discrete Element Method in the Research of Agricultural Machinery: A Review," Agriculture, MDPI, vol. 11(5), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhu & Xiaoning He & Shuqi Shang & Zhuang Zhao & Haiqing Wang & Ying Tan & Chengpeng Li & Dongwei Wang, 2022. "Evaluation of Soil-Cutting and Plant-Crushing Performance of Rotary Blades with Double-Eccentric Circular-Edge Curve for Harvesting Cyperus esculentus," Agriculture, MDPI, vol. 12(6), pages 1-21, June.
    2. Zhuang Zhao & Xiaoning He & Shuqi Shang & Jialin Hou & Hao Zhu & Haiqing Wang & Yuetao Wang & Dongjie Li & Zengcun Chang & Chao Xia & Dongwei Wang, 2022. "Design and Testing of Discrete Element-Based Counter-Rotating Excavation Device for Cyperus esculentus," Agriculture, MDPI, vol. 12(10), pages 1-24, October.
    3. Dongxu Yan & Jianqun Yu & Yang Wang & Kai Sun & Long Zhou & Ye Tian & Na Zhang, 2022. "Measurement and Calibration of DEM Parameters of Soybean Seed Particles," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    4. Yuyao Li & Jiali Fan & Zhichao Hu & Weiwen Luo & Hongguang Yang & Lili Shi & Feng Wu, 2022. "Calibration of Discrete Element Model Parameters of Soil around Tubers during Potato Harvesting Period," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    5. Long Wang & Jianfei Xing & Xiaowei He & Xin Li & Wensong Guo & Xufeng Wang & Shulin Hou, 2023. "Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    6. Wang Yang & Jinfei Zhao & Xinying Liu & Linqiao Xi & Jiean Liao, 2022. "Simulation and Test of “Separated Burying Device” of Green Manure Returning Machine Based on the EDEM Software," Agriculture, MDPI, vol. 12(5), pages 1-15, April.
    7. Heng Zhang & Zhentuo Wen & Yaya Chen & Junxiao Liu & Hongxin Liu & Zhifu Zhang & Xirui Zhang, 2023. "Research on Cutting Angle Design Optimization of Rubber Cutter Based on Discrete Element Method," Agriculture, MDPI, vol. 13(10), pages 1-20, September.
    8. Kehong Yan & Shuai Yao & Yicheng Huang & Zhan Zhao, 2023. "Study on Pulling Dynamic Characteristics of White Radish and the Optimal Design of a Harvesting Device," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    9. Xun He & Yanliu Lv & Zhe Qu & Wanzhang Wang & Zheng Zhou & Hao He, 2022. "Parameters Optimization and Test of Caterpillar Self-Propelled Tiger Nut Harvester Hoisting Device," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    10. Yao Hu & Wei Xiang & Yiping Duan & Bo Yan & Lan Ma & Jiajie Liu & Jiangnan Lyu, 2023. "Calibration of Ramie Stalk Contact Parameters Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(5), pages 1-32, May.
    11. Emmanuel Awuah & Kojo Atta Aikins & Diogenes L. Antille & Jun Zhou & Bertrand Vigninou Gbenontin & Peter Mecha & Zian Liang, 2023. "Discrete Element Method Simulation and Field Evaluation of a Vibrating Root-Tuber Shovel in Cohesive and Frictional Soils," Agriculture, MDPI, vol. 13(8), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:104-:d:1019673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.