IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p530-d789594.html
   My bibliography  Save this article

Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging

Author

Listed:
  • Xuan Chu

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

  • Pu Miao

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

  • Kun Zhang

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

  • Hongyu Wei

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

  • Han Fu

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Hongli Liu

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

  • Hongzhe Jiang

    (College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Zhiyu Ma

    (College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

Abstract

Physiological maturity of bananas is of vital importance in determination of their quality and marketability. This study assessed, with the use of a Vis/NIR hyperspectral imaging (400–1000 nm), the feasibility in differentiating six maturity levels (maturity level 2, 4, and 6 to 9) of green dwarf banana and characterizing their quality changes during maturation. Spectra were extracted from three zones (pedicel, middle and apex zone) of each banana finger, respectively. Based on spectra of each zone, maturity identification models with high accuracy (all over 91.53% in validation set) were established by partial least squares discrimination analysis (PLSDA) method with raw spectra. A further generic PLSDA model with an accuracy of 94.35% for validation was created by the three zones’ spectra pooled to omit the effect of spectra acquisition position. Additionally, a spectral interval was selected to simplify the generic PLSDA model, and an interval PLSDA model was built with an accuracy of 85.31% in the validation set. For characterizing some main quality parameters (soluble solid content, SSC; total acid content, TA; chlorophyll content and total chromatism, ΔE*) of banana, full-spectra partial least squares (PLS) models and interval PLS models were, respectively, developed to correlate those parameters with spectral data. In full-spectra PLS models, high coefficients of determination (R 2 ) were 0.74 for SSC, 0.68 for TA, and fair of 0.42 as well as 0.44 for chlorophyll and ΔE*. The performance of interval PLS models was slightly inferior to that of the full-spectra PLS models. Results suggested that models for SSC and TA had an acceptable predictive ability (R 2 = 0.64 and 0.59); and models for chlorophyll and ΔE* (R 2 = 0.34 and 0.30) could just be used for sample screening. Visualization maps of those quality parameters were also created by applying the interval PLS models on each pixel of the hyperspectral image, the distribution of quality parameters in which were basically consistent with the actual measurement. This study proved that the hyperspectral imaging is a useful tool to assess the maturity level and quality of dwarf bananas.

Suggested Citation

  • Xuan Chu & Pu Miao & Kun Zhang & Hongyu Wei & Han Fu & Hongli Liu & Hongzhe Jiang & Zhiyu Ma, 2022. "Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:530-:d:789594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armacheska Rivero Mesa & John Y. Chiang, 2021. "Multi-Input Deep Learning Model with RGB and Hyperspectral Imaging for Banana Grading," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingru Hou & Yaohua Hu & Peng Zhang & Lixia Hou, 2022. "Potato Late Blight Severity and Epidemic Period Prediction Based on Vis/NIR Spectroscopy," Agriculture, MDPI, vol. 12(7), pages 1-17, June.
    2. Jingmin Shi & Fanhuai Shi & Xixia Huang, 2023. "Prediction of Maturity Date of Leafy Greens Based on Causal Inference and Convolutional Neural Network," Agriculture, MDPI, vol. 13(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
    2. Junchi Zhou & Wenwu Hu & Airu Zou & Shike Zhai & Tianyu Liu & Wenhan Yang & Ping Jiang, 2022. "Lightweight Detection Algorithm of Kiwifruit Based on Improved YOLOX-S," Agriculture, MDPI, vol. 12(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:530-:d:789594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.