IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p282-d751174.html
   My bibliography  Save this article

The Design and Experimentation of EVPIVS-PID Harvesters’ Header Height Control System Based on Sensor Ground Profiling Monitoring

Author

Listed:
  • Ranbing Yang

    (College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
    College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China
    These authors contributed equally to this work.)

  • Zhichao Wang

    (College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China
    These authors contributed equally to this work.)

  • Shuqi Shang

    (College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Jian Zhang

    (College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Yiren Qing

    (College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

  • Xiantao Zha

    (College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

Abstract

In this paper, an adaptive header height control system is designed. Through the influence of the natural frequency, ω n , and damping ratio, ζ , on the system’s dynamic index, the optimal hydraulic cylinder parameters are determined comprehensively. The ground profiling monitoring mechanism and the header height feedback mechanism based on the angle sensor are designed. An integrated electromagnetic proportional valve was installed to replace the original header-controlled, electronically-controlled reversing valve, and a PWM (pulse width modulation) control-simulated counterweight test was performed. The limitation of traditional PID facing the integral saturation state is analysed, and a new EVPIVS-PID algorithm is proposed and simulated. Through the analysis of multiple groups of sample data in the field test, the accuracy of the control system in the header height control and output PWM value is demonstrated. The effectiveness of the EVPIVS-PID control algorithm to change the corresponding PID parameters based on the monitoring operation speed is analysed and demonstrated. Experiments show that the adaptive control system of header height based on ground profiling has a stable control effect. The height error of cutting stubble is not more than 2 cm, which can meet the requirements of a 5–11 km/h harvesting speed in plain areas.

Suggested Citation

  • Ranbing Yang & Zhichao Wang & Shuqi Shang & Jian Zhang & Yiren Qing & Xiantao Zha, 2022. "The Design and Experimentation of EVPIVS-PID Harvesters’ Header Height Control System Based on Sensor Ground Profiling Monitoring," Agriculture, MDPI, vol. 12(2), pages 1-24, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:282-:d:751174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Abu Ayub Siddique & Wan-Soo Kim & Yeon-Soo Kim & Taek-Jin Kim & Chang-Hyun Choi & Hyo-Jai Lee & Sun-Ok Chung & Yong-Joo Kim, 2020. "Effects of Temperatures and Viscosity of the Hydraulic Oils on the Proportional Valve for a Rice Transplanter Based on PID Control Algorithm," Agriculture, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Li & Yalei Xu & Zhiguo Pan & Huan Zhang & Tianfeng Sun & Yuming Zhai, 2022. "Design and Experiment of Sweet Potato Up-Film Transplanting Device with a Boat-Bottom Posture," Agriculture, MDPI, vol. 12(10), pages 1-25, October.
    2. Nicolae-Valentin Vlăduț & Nicoleta Ungureanu & Sorin-Ştefan Biriş & Iulian Voicea & Florin Nenciu & Iuliana Găgeanu & Dan Cujbescu & Lorena-Diana Popa & Sorin Boruz & Gheorghe Matei & Adam Ekielski & , 2023. "Research on the Identification of Some Optimal Threshing and Separation Regimes in the Axial Flow Apparatus," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    3. Weijian Liu & Xiwen Luo & Shan Zeng & Li Zeng & Zhiqiang Wen, 2022. "The Design and Test of the Chassis of a Triangular Crawler-Type Ratooning Rice Harvester," Agriculture, MDPI, vol. 12(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Abu Ayub Siddique & Yong-Joo Kim & Seung-Min Baek & Seung-Yun Baek & Tae-Ho Han & Wan-Soo Kim & Yeon-Soo Kim & Ryu-Gap Lim & Yong Choi, 2022. "Development of the Reliability Assessment Process of the Hydraulic Pump for a 78 kW Tractor during Major Agricultural Operations," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    2. Yu Wang & Ling Wang & Jianhua Zong & Dongxiao Lv & Shumao Wang, 2021. "Research on Loading Method of Tractor PTO Based on Dynamic Load Spectrum," Agriculture, MDPI, vol. 11(10), pages 1-14, October.
    3. Md Nafiul Islam & Md Zafar Iqbal & Mohammod Ali & Milon Chowdhury & Md Shaha Nur Kabir & Tusan Park & Yong-Joo Kim & Sun-Ok Chung, 2020. "Kinematic Analysis of a Clamp-Type Picking Device for an Automatic Pepper Transplanter," Agriculture, MDPI, vol. 10(12), pages 1-17, December.
    4. Md. Abu Ayub Siddique & Seung-Min Baek & Seung-Yun Baek & Yong-Joo Kim & Ryu-Gap Lim, 2022. "Development, Validation, and Evaluation of Partial PST Tractor Simulation Model for Different Engine Modes during Field Operations," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    5. Md. Abu Ayub Siddique & Seung-Min Baek & Seung-Yun Baek & Wan-Soo Kim & Yeon-Soo Kim & Yong-Joo Kim & Dae-Hyun Lee & Kwan-Ho Lee & Joon-Yeal Hwang, 2021. "Simulation of Fuel Consumption Based on Engine Load Level of a 95 kW Partial Power-Shift Transmission Tractor," Agriculture, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:282-:d:751174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.