IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1544-d924480.html
   My bibliography  Save this article

Antioxidant Capacity of Chitosan on Sorghum Plants under Salinity Stress

Author

Listed:
  • Takalani Mulaudzi

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Mulisa Nkuna

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Gershwin Sias

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Ibrahima Zan Doumbia

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Njagi Njomo

    (SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Emmanuel Iwuoha

    (SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

Abstract

Salinity stress is one of the major environmental constraints responsible for the reductions in agricultural productivity. Salinity affects crop growth, by causing osmotic and ionic stresses, which induce oxidative damage due to increased reactive oxygen species (ROS). Exogenous application of natural compounds can reduce the negative impacts of salinity stress on plants. This study evaluated the antioxidant capacity of chitosan, a biopolymer to reduce the salt-induced oxidative damage on sorghum plants. Morpho-physiological and biochemical attributes of sorghum plants stressed with 300 mM NaCl, in combination with chitosan (0.25 and 0.5 mg/mL), were assayed. Salt stress decreased growth, fresh (66.92%) and dry (48.26%) weights, affected the shape and size of the stomata, caused deformation of the xylem and phloem layers, and increased the Na + /K + (1.3) and Na + /Si + (5.4) ratios. However, chitosan effectively reversed these negative effects, as supported by decreased Na + /Si + ratio (~0.9) and formed silica phytoliths. Oxidative stress was exerted as observed by increased H 2 O 2 (44%) and malondialdehyde (125%) contents under salt stress, followed by their reduction in chitosan-treated sorghum plants. Salt increased proline (318.67%), total soluble sugars (44.69%), and activities of SOD (36.04%) and APX (131.58%), indicating sorghum’s ROS scavenging capacity. The antioxidant capacity of chitosan was measured by determining its ability to reduce oxidative damage and minimizing the induction of the antioxidant defense system. Chitosan reduced oxidative stress markers, proline, total soluble sugars, and the antioxidant enzyme activities by more than 50%. Fourier Transform Infrared Spectra of chitosan-treated samples confirmed a reduction in the degradation of biomolecules, and this correlated with reduced oxidative stress. The results suggest that chitosan’s antioxidant capacity to alleviate the effects of salt stress is related to its role in improving silicon accumulation in sorghum plants.

Suggested Citation

  • Takalani Mulaudzi & Mulisa Nkuna & Gershwin Sias & Ibrahima Zan Doumbia & Njagi Njomo & Emmanuel Iwuoha, 2022. "Antioxidant Capacity of Chitosan on Sorghum Plants under Salinity Stress," Agriculture, MDPI, vol. 12(10), pages 1-20, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1544-:d:924480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tharani Gopalakrishnan & Lalit Kumar, 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    2. Pablo Rugero Magalhães Dourado & Edivan Rodrigues de Souza & Monaliza Alves dos Santos & Cintia Maria Teixeira Lins & Danilo Rodrigues Monteiro & Martha Katharinne Silva Souza Paulino & Bruce Schaffer, 2022. "Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity," Agriculture, MDPI, vol. 12(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Raj Gheyi & Devinder Sandhu & Claudivan Feitosa de Lacerda, 2023. "Fields of the Future: Pivotal Role of Biosaline Agriculture in Farming," Agriculture, MDPI, vol. 13(9), pages 1-5, September.
    2. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    3. Rui Zhao & Kening Wu, 2021. "Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China," Agriculture, MDPI, vol. 11(7), pages 1-27, June.
    4. Sadia Shahid & Muhammad Shahbaz & Muhammad Faisal Maqsood & Fozia Farhat & Usman Zulfiqar & Talha Javed & Muhammad Fraz Ali & Majid Alhomrani & Abdulhakeem S. Alamri, 2022. "Proline-Induced Modifications in Morpho-Physiological, Biochemical and Yield Attributes of Pea ( Pisum sativum L.) Cultivars under Salt Stress," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
    6. Ruixia Chen & Lijian Zheng & Jinjiang Zhao & Juanjuan Ma & Xufeng Li, 2023. "Biochar Application Maintains Photosynthesis of Cabbage by Regulating Stomatal Parameters in Salt-Stressed Soil," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    7. Tharani Gopalakrishnan & Lalit Kumar, 2021. "Linking Long-Term Changes in Soil Salinity to Paddy Land Abandonment in Jaffna Peninsula, Sri Lanka," Agriculture, MDPI, vol. 11(3), pages 1-12, March.
    8. Mădălina Trușcă & Ștefania Gâdea & Roxana Vidican & Vlad Stoian & Anamaria Vâtcă & Claudia Balint & Valentina Ancuța Stoian & Melinda Horvat & Sorin Vâtcă, 2023. "Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    9. Chunyu Li & Zhichao Wang & Yutao Xu & Jingfei Sun & Xinyi Ruan & Xuanwen Mao & Xiangyun Hu & Peng Liu, 2023. "Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1544-:d:924480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.