IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1530-d923154.html
   My bibliography  Save this article

Analysis of Spatial Variability of Plough Layer Compaction by High-Power and No-Tillage Multifunction Units in Northeast China

Author

Listed:
  • Wenjie Li

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing 100083, China)

  • Zhenghe Song

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing 100083, China)

  • Minli Yang

    (College of Engineering, China Agricultural University, Beijing 100083, China
    China Research Center for Agricultural Mechanization Development, China Agricultural University, Beijing 100083, China)

  • Xiao Yang

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing 100083, China)

  • Zhenhao Luo

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing 100083, China)

  • Weijie Guo

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing 100083, China)

Abstract

In this study, we addressed the problem of the spatial variability of plough layer compaction by high-power and no-tillage multifunction units in the management of maize planting in the Great Northern Wilderness in China. A comprehensive field experiment involving high-power and no-tillage multifunction units for 165 acres of maize was conducted and analyzed using GIS. Firstly, the test area was divided into four areas, and points were set at equal horizontal distances to collect data on the compactness, water content, porosity and fatigue of the plough layer at different depths. Secondly, the GIS kriging difference method was used to analyze the impact of longitudinal compaction of the plough layer profile at each depth in different test areas. Thirdly, the GIS kriging difference method was used to analyze the lateral spatial distribution of plough layer compaction. Finally, the spatial longitudinal and transverse variabilities of the plough layer were summarized, and the effect of the high-power and no-tillage multifunction units on the physical ecology of the soil in the plough layer was investigated. The results show that the physical properties of the plough layer can be significantly affected by compaction after spreading in the middle tillage period. The surface soil was most affected, with the greatest change in compactness and porosity; the rate of change of soil compactness reached 143.49% and the rate of change of soil porosity reached 40.57%. With the increase in soil depth, the rate of change of soil compactness and porosity gradually decreased. The greatest variation in soil moisture content was found in the middle layer and reached a maximum of 13.78% at a depth of approximately 20 cm. The results of the spatial variability analysis show that the mean values of c 0 /( c 0 + c ) for the spatial semi-variance functions of compactness, water content and porosity of the tilled soil in the longitudinal space of each test area before compaction were approximately 15%, 19% and 20%, respectively; after compaction, the mean values were approximately 33%, 23% and 30%, respectively; the mean values of c 0 /( c 0 + c ) for the spatial semi-variance functions of compactness, water content and porosity change of the tilled soil were approximately 24%, 14% and 12%, respectively. The mean values of c 0 /( c 0 + c ) for the spatial semi-variance functions of compactness, water content and porosity of the soil at each depth in the lateral space before compaction were approximately 80%, 71% and 78%, respectively, and after compaction the mean values were approximately 40%, 23% and 24%, respectively, with the mean values of c 0 /( c 0 + c ) along the east–west direction being approximately 8%, 27% and 18%, and the mean values of c 0 /( c 0 + c ) along the north–south direction being approximately 9%, 0% and 20%. The results show that compaction by high-power and no-tillage multifunction units led to a decrease in the spatial variability of soil physical parameters at each depth of tillage in the black soil layer in the longitudinal space, while the spatial variability of the soil physical parameters at each depth of tillage in the black soil layer in the transverse space increased. Moreover, the degree of influence of compaction by high-power and no-tillage multifunction units on soil physical parameters was higher in both vertical and horizontal spaces. This study can provide a theoretical reference for the analysis of the impact of large units on the compaction of black soil layers from the perspective of GIS.

Suggested Citation

  • Wenjie Li & Zhenghe Song & Minli Yang & Xiao Yang & Zhenhao Luo & Weijie Guo, 2022. "Analysis of Spatial Variability of Plough Layer Compaction by High-Power and No-Tillage Multifunction Units in Northeast China," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1530-:d:923154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Orzech & Maria Wanic & Dariusz Załuski, 2021. "The Effects of Soil Compaction and Different Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields of Winter Oilseed Rape and Cereals," Agriculture, MDPI, vol. 11(7), pages 1-17, July.
    2. Kobby Acquah & Ying Chen, 2022. "Soil Compaction from Wheel Traffic under Three Tillage Systems," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    3. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    4. Gerhard Moitzi & Elisabeth Sattler & Helmut Wagentristl, 2021. "Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield," Agriculture, MDPI, vol. 11(7), pages 1-8, July.
    5. Xianliang Wang & Jin He & Mingyue Bai & Lei Liu & Shang Gao & Kun Chen & Haiyang Zhuang, 2022. "The Impact of Traffic-Induced Compaction on Soil Bulk Density, Soil Stress Distribution and Key Growth Indicators of Maize in North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    6. Xiaoman Qiang & Jingsheng Sun & Huifeng Ning, 2022. "Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    2. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    3. Hongjun Liu & Wei Yan & Yao Ji & Wenyi Zhang, 2022. "Working Performance of the Low-Adhesion and Anti-Slip Bionic Press Roller in the Rice–Wheat Rotation Area," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    4. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    5. Weiwei Wang & Jiale Song & Guoan Zhou & Longzhe Quan & Chunling Zhang & Liqing Chen, 2022. "Development and Numerical Simulation of a Precision Strip-Hole Layered Fertilization Subsoiler While Sowing Maize," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
    6. Weronika Ptak & Jarosław Czarnecki & Marek Brennensthul & Krzysztof Lejman & Agata Małecka, 2023. "Evaluation of Tire Footprint in Soil Using an Innovative 3D Scanning Method," Agriculture, MDPI, vol. 13(3), pages 1-15, February.
    7. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    8. Fernando G. de Souza & Bruno C. Mantovanelli & Romaria G. de Almeida & Douglas M. P. da Silva & Milton C. C. Campos & Jose Maurício da Cunha & Robson V. dos Santos & Emanuel da C. Cavalcante & Elilson, 2023. "Impacts of Forest-Agriculture Conversion on Soil Physical-Water Attributes in Amazon Basin, Southeastern Brazil," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 16(4), pages 1-66, July.
    9. Mustafa Ucgul & Chung-Liang Chang, 2023. "Design and Application of Agricultural Equipment in Tillage Systems," Agriculture, MDPI, vol. 13(4), pages 1-3, March.
    10. Sara Marinari & Emanuele Radicetti & Verdiana Petroselli & Mohamed Allam & Roberto Mancinelli, 2022. "Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato ( Solanum tuberosum L.) Crop," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
    11. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    12. Hunggul Yudono Setio Hadi Nugroho & Markus Kudeng Sallata & Merryana Kiding Allo & Nining Wahyuningrum & Agung Budi Supangat & Ogi Setiawan & Gerson Ndawa Njurumana & Wahyudi Isnan & Diah Auliyani & F, 2023. "Incorporating Traditional Knowledge into Science-Based Sociotechnical Measures in Upper Watershed Management: Theoretical Framework, Existing Practices and the Way Forward," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    13. Mohamed Allam & Emanuele Radicetti & Mortadha Ben Hassine & Aftab Jamal & Zainul Abideen & Roberto Mancinelli, 2023. "A Meta-Analysis Approach to Estimate the Effect of Cover Crops on the Grain Yield of Succeeding Cereal Crops within European Cropping Systems," Agriculture, MDPI, vol. 13(9), pages 1-18, August.
    14. Ying Wang & Sen Yang & Jian Sun & Ziguang Liu & Xinmiao He & Jinyou Qiao, 2023. "Effects of Tillage and Sowing Methods on Soil Physical Properties and Corn Plant Characters," Agriculture, MDPI, vol. 13(3), pages 1-15, March.
    15. Adriaan Vanderhasselt & Ronald Euben & Tommy D’Hose & Wim Cornelis, 2022. "Slurry Spreading on a Silt Loam Soil: Influence of Tyre Inflation Pressure, Number of Passages, Machinery Choice and Tillage Method on Physical Soil Quality and Sugar Beet Growth," Land, MDPI, vol. 11(6), pages 1-23, June.
    16. Wei Quan & Mingliang Wu & Zhenwei Dai & Haifeng Luo & Fanggang Shi, 2022. "Design and Testing of Reverse-Rotating Soil-Taking-Type Hole-Forming Device of Pot Seedling Transplanting Machine for Rapeseed," Agriculture, MDPI, vol. 12(3), pages 1-22, February.
    17. Sara Marinari & Emanuele Radicetti & Roberto Mancinelli, 2022. "Soil Quality and Health to Assess Agro-Ecosystems Services," Agriculture, MDPI, vol. 12(6), pages 1-4, May.
    18. Dorota Gawęda & Małgorzata Haliniarz, 2022. "The Yield and Weed Infestation of Winter Oilseed Rape ( Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems," Agriculture, MDPI, vol. 12(4), pages 1-20, April.
    19. Zhijie Li & Hongguang Liu & Haichang Yang & Tangang Wang, 2023. "Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang," Agriculture, MDPI, vol. 13(10), pages 1-13, September.
    20. Han Lin & Jin He & Hui Li & Hongwen Li & Qingjie Wang & Caiyun Lu & Yanjie Li & Shaomei Jiang, 2022. "A Review of Research Progress on Soil Organic Cover Machinery in China," Agriculture, MDPI, vol. 12(9), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1530-:d:923154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.