IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1085-d670476.html
   My bibliography  Save this article

Design and Experiment of the Buckwheat Hill-Drop Planter Hole Forming Device

Author

Listed:
  • Yu Chen

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

  • Yuming Cheng

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

  • Jun Chen

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

  • Zhiqi Zheng

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

  • Chenwei Hu

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

  • Jiayu Cao

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang‎ 712100, China)

Abstract

The hole forming device is an important element of the buckwheat hill-drop planter, and its design level directly affects the seeding quality of the hill-drop planter. A hole forming device with a duckbill structure is widely used in hill-drop planters for wheat, cotton, peanuts, etc. According to the requirements of buckwheat seeding operations, this study designs the components of the duckbill hole forming device. It is determined that the duckbill upper jaw length is 65 mm, the duckbills number is 10, the pressure plate on the spring side length is 90 mm, the duckbill opening size is 8.79 mm, and the duckbill effective opening time is 0.1 s. Through co-simulation analysis of discrete element software EDEM (DEM-Solutions, Edinburgh, United Kingdom) and multi-body dynamics software RecurDyn (FunctionBay, Inc., Seongnam-si, South Korea), it is measured that when the pressure plate on the spring side is directly below the rotation axis of the dibber wheel, the spring compression is 33.3 mm, the pressure on the pressure plate is 95–102.6 N, and the contact time of a single duckbill with the soil is 0.2 s at a speed of 40 r/min. Based on the results of the design and simulation analysis, the large end diameter, small end diameter, original length and wire diameter of the duckbill spring are 36 mm, 26 mm, 60 mm, and 1.8 mm, respectively. An experimental bench for the seeding wheel of a buckwheat hill-drop planter was built, and three wire diameter duckbill springs of 1.6 mm, 1.8 mm and 2.0 mm were tested to verify the simulation and calculation results. The experimental results show that the optimal wire diameter of the duckbill spring is 1.8 mm. Finally, a single factor experiment of the dibber wheel rotation speed was carried out. The experimental results show that when the rotation speed of the dibber wheel is 40–65 r/min, the seeding qualification rate, seeding void hole rate and seeding damage rate of the buckwheat hill-drop planter are ≥85.3%, 0, and <0.3%, respectively. This study provides a basis and reference for the hole forming device design of a buckwheat hill-drop planter.

Suggested Citation

  • Yu Chen & Yuming Cheng & Jun Chen & Zhiqi Zheng & Chenwei Hu & Jiayu Cao, 2021. "Design and Experiment of the Buckwheat Hill-Drop Planter Hole Forming Device," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1085-:d:670476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sugirbay Adilet & Jian Zhao & Nukeshev Sayakhat & Jun Chen & Zagainov Nikolay & Lingxin Bu & Zhanar Sugirbayeva & Guangrui Hu & Muratkhan Marat & Zhiwei Wang, 2021. "Calibration Strategy to Determine the Interaction Properties of Fertilizer Particles Using Two Laboratory Tests and DEM," Agriculture, MDPI, vol. 11(7), pages 1-19, June.
    2. Xiantao Zha & Guozhong Zhang & Yuhang Han & Abouelnadar Elsayed Salem & Jianwei Fu & Yong Zhou, 2021. "Structural Optimization and Performance Evaluation of Blocking Wheel-Type Screw Fertilizer Distributor," Agriculture, MDPI, vol. 11(3), pages 1-17, March.
    3. Jinwu Wang & Xin Qi & Changsu Xu & Ziming Wang & Yeming Jiang & Han Tang, 2021. "Design Evaluation and Performance Analysis of the Inside-Filling Air-Assisted High-Speed Precision Maize Seed-Metering Device," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Quan & Mingliang Wu & Zhenwei Dai & Haifeng Luo & Fanggang Shi, 2022. "Design and Testing of Reverse-Rotating Soil-Taking-Type Hole-Forming Device of Pot Seedling Transplanting Machine for Rapeseed," Agriculture, MDPI, vol. 12(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuli Zhang & Yikun Pei & Yong Chen & Qianglong Song & Peilin Zhou & Yueqing Xia & Xiaochan Liu, 2022. "The Design and Experiment of Vertical Variable Cavity Base Fertilizer Fertilizing Apparatus," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    2. Adilet Sugirbay & Guang-Rui Hu & Jun Chen & Zhasulan Mustafin & Marat Muratkhan & Ruslan Iskakov & Yu Chen & Shuo Zhang & Lingxin Bu & Yerassyl Dulatbay & Bauyrzhan Mukhamed, 2022. "A Study on the Calibration of Wheat Seed Interaction Properties Based on the Discrete Element Method," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    3. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    4. Jinming Zheng & Lin Wang & Xiaochan Wang & Yinyan Shi & Zhenyu Yang, 2023. "Parameter Calibration of Cabbages ( Brassica oleracea L.) Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    5. Weiquan Fang & Xinzhong Wang & Dianlei Han & Xuegeng Chen, 2022. "Review of Material Parameter Calibration Method," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    6. Adilet Sugirbay & Kaiyuan Zhao & Guangyao Liu & Guangrui Hu & Jun Chen & Zhasulan Mustafin & Ruslan Iskakov & Nurbol Kakabayev & Marat Muratkhan & Valery Khan & Yu Chen & Shuo Zhang, 2023. "Double Disc Colter for a Zero-Till Seeder Simultaneously Applying Granular Fertilizers and Wheat Seeds," Agriculture, MDPI, vol. 13(5), pages 1-15, May.
    7. Dongxu Su & Weixiang Yao & Fenghua Yu & Yihan Liu & Ziyue Zheng & Yulong Wang & Tongyu Xu & Chunling Chen, 2022. "Single-Neuron PID UAV Variable Fertilizer Application Control System Based on a Weighted Coefficient Learning Correction," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    8. Mingjin Xin & Zhiwen Jiang & Yuqiu Song & Hongguang Cui & Aiju Kong & Bowen Chi & Renbao Shan, 2023. "Compression Strength and Critical Impact Speed of Typical Fertilizer Grains," Agriculture, MDPI, vol. 13(12), pages 1-16, December.
    9. Jianwei Fu & Gan Xie & Chao Ji & Weikang Wang & Yong Zhou & Guozhong Zhang & Xiantao Zha & Mohamed Anwer Abdeen, 2021. "Study on the Distribution Pattern of Threshed Mixture by Drum-Shape Bar-Tooth Longitudinal Axial Flow Threshing and Separating Device," Agriculture, MDPI, vol. 11(8), pages 1-15, August.
    10. Hongbo Zhao & Yuxiang Huang & Zhengdao Liu & Wenzheng Liu & Zhiqi Zheng, 2021. "Applications of Discrete Element Method in the Research of Agricultural Machinery: A Review," Agriculture, MDPI, vol. 11(5), pages 1-26, May.
    11. Deli Jiang & Xuegeng Chen & Limin Yan & Haixiao Gou & Jiacheng Yang & Ying Li, 2023. "Parameter Calibration of Discrete Element Model for Cotton Rootstalk–Soil Mixture at Harvest Stage in Xinjiang Cotton Field," Agriculture, MDPI, vol. 13(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1085-:d:670476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.