IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1051-d665451.html
   My bibliography  Save this article

Practical Structural Design and Construction of an Innovative Composite Plastic Greenhouse

Author

Listed:
  • Meng-Hao Tsai

    (Department of Civil Engineering, National Pingtung University of Science and Technology, No.1 Hseuh-Fu Rd., Neipu Towship 912, Pingtung County, Taiwan)

  • Ying-Chieh Lee

    (Department of Materials Engineering, National Pingtung University of Science and Technology, No.1 Hseuh-Fu Rd., Neipu Towship 912, Pingtung County, Taiwan)

Abstract

A composite plastic material made of recycled Polyethylene terephthalate (PET), Nylon, and glass fiber reinforced Nylon was innovated and applied to the construction of a prototype simple greenhouse in this study. With reference to the mechanical properties of a conventional galvanized steel greenhouse, sectional dimensions of the composite plastic structural members were determined. Structural performances of the conventional galvanized steel and the composite plastic greenhouse models were analyzed under static design wind loads. It was realized that the greenhouse model designed with composite plastic 田-sections of 5 mm wall thickness could have peak displacement response and sectional forces comparable to that of the galvanized steel greenhouse. Therefore, the 田-sections with 5 mm wall thickness were manufactured and used to construct the prototype simple greenhouse. On-site free vibration tests were conducted to estimate the dynamic characteristics of the prototype for validating the design assumptions and assembly procedure. The test results indicated that the prototype had a similar vibration period to that predicted from the numerical model. Moreover, the composite plastic greenhouse could have an average damping ratio of 6.2%.

Suggested Citation

  • Meng-Hao Tsai & Ying-Chieh Lee, 2021. "Practical Structural Design and Construction of an Innovative Composite Plastic Greenhouse," Agriculture, MDPI, vol. 11(11), pages 1-14, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1051-:d:665451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    2. Zilong Fan & Yiming Li & Lingling Jiang & Lu Wang & Tianlai Li & Xingan Liu, 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    3. Edwin Villagran & Carlos Bojacá & Mohammad Akrami, 2021. "Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    4. Edwin Villagrán & Jorge Flores-Velazquez & Mohammad Akrami & Carlos Bojacá, 2021. "Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach," Sustainability, MDPI, vol. 13(24), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1051-:d:665451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.