IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p631-d461851.html
   My bibliography  Save this article

Fabrication and Evaluation of a Cabbage Harvester Prototype

Author

Listed:
  • Mohamed Ibrahim El Didamony

    (Department of Agricultural Engineering, Tanta University, Tanta 31527, Egypt)

  • Ahmed Mohamed El Shal

    (Department of Agricultural Engineering, Zagazig University, Zagazig 44511, Egypt)

Abstract

A cabbage harvester prototype was fabricated and tested to save time, cost, and labor for harvesting. This harvester was designed for harvesting operations to drive the prototype and control the harvester. The single-row prototype harvesting meets the functional requirements of the physical properties of the Egyptian cabbage. The performance of the harvester prototype was evaluated on two shapes of cutter disc, four cutter disc speeds, and four cutter disc angles; these parameters were assessed at 88% moisture content of the cabbage head and average forward speed of 1.5 km/h. The results demonstrated that the serrated edge cutter discs and 900 rpm disc speed produced actual productivity of 12.56 ton/h, 2.28 kW power requirements, 0.18 kW h/ton specific energy requirement, and of 3.66 $/h operating cost. It turns out that the harvester did not do major harm to the cabbage and less than 4% damage. Operating the harvester at the optimum parameters saves cost and time compared with manual harvesting.

Suggested Citation

  • Mohamed Ibrahim El Didamony & Ahmed Mohamed El Shal, 2020. "Fabrication and Evaluation of a Cabbage Harvester Prototype," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:631-:d:461851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/631/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyu Tong & Jianfei Zhang & Guangqiao Cao & Zhiyu Song & Xiaofeng Ning, 2023. "Design and Experiment of a Low-Loss Harvesting Test Platform for Cabbage," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
    2. Huimin Xu & Gaohong Yu & Chenyu Niu & Xiong Zhao & Yimiao Wang & Yijin Chen, 2023. "Design and Experiment of an Underactuated Broccoli-Picking Manipulator," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    3. Jinming Zheng & Lin Wang & Xiaochan Wang & Yinyan Shi & Zhenyu Yang, 2023. "Parameter Calibration of Cabbages ( Brassica oleracea L.) Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:631-:d:461851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.