IDEAS home Printed from
   My bibliography  Save this article

Macroeconomic shocks and credit risk stress testing the Iranian banking sector


  • Fatemeh Abdolshah
  • Saeed Moshiri
  • Andrew Worthington


Purpose - The Iranian banking industry has been greatly affected by dramatic changes in macroeconomic conditions over the past several decades owing to volatile oil revenues, changing fiscal and monetary policies, and the imposition of US sanctions. The main objective of this paper is to estimate potential credit losses in the Iranian banking sector due to macroeconomic shocks and assess the minimum economic capital requirements under the baseline and distressed scenarios. The paper also contrasts the applications of linear and nonlinear models in estimating the impacts of macroeconomic shocks on financial institutions. Design/methodology/approach - The paper uses a multistage approach to derive the portfolio loss distribution for banks. In the first step, the dynamic relationship between the selected macroeconomic variables are estimated using a VAR model to generate the stress scenarios. In the second step, the default probabilities are estimated using a quantile regression model and the results are compared with those of the conventional linear models. Finally, the default probabilities are simulated for a one-year time horizon using Monte-Carlo method and the portfolio loss distribution is calculated for hypothetical portfolios. The expected loss includes the loss given default for loans drawn randomly and uniformly distributed and exposed at default values when loans are assigned a fixed value. Findings - The results indicate that the loss distributions under all scenarios are skewed to the right, with the linear model results being very similar to those of quantile at the 50% quantile, but very unlike those at the 10% and 90% quantiles. Specifically, the quantile model for the 90% (10%) quantile generates estimates of minimum economic capital requirement that are considerably higher (lower) than those using the linear model. Research limitations/implications - The study has focused on credit risk because of lack of data on other types of risk at individual bank level. The future studies can estimate the aggregate economic capital using a risk aggregation approach and a panel data (not presently available), which could further improve the accuracy of the estimates. Practical implications - The fiscal and monetary authorities in developing countries, specially oil-exporting countries, can follow the risk assessment approach to assess the health of their banking system and adapt policies to mitigate the impacts of large macroeconomic shocks on their financial markets. Originality/value - This is the first paper estimating the portfolio loss distribution for the Iranian banks under turbulent macroeconomic conditions using linear and nonlinear models. The case study can be applied to other developing and emerging countries, particularly those highly dependent on natural resources, prone to extreme macroeconomic shocks.

Suggested Citation

  • Fatemeh Abdolshah & Saeed Moshiri & Andrew Worthington, 2020. "Macroeconomic shocks and credit risk stress testing the Iranian banking sector," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(2), pages 275-295, September.
  • Handle: RePEc:eme:jespps:jes-11-2019-0498
    DOI: 10.1108/JES-11-2019-0498

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers

    File URL:
    Download Restriction: Access to full text is restricted to subscribers

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Credit risk; Loss distribution; Capital requirement; Wilson model; Quantile regression; Stress testing; C21; E17; G21;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jespps:jes-11-2019-0498. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.