IDEAS home Printed from https://ideas.repec.org/a/eme/ijppmp/ijppm-01-2021-0029.html
   My bibliography  Save this article

Conceptualizing a new circular economy feature – storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia

Author

Listed:
  • Matevz Obrecht
  • Rhythm Singh
  • Timitej Zorman

Abstract

Purpose - This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL) phase. Since EVs currently on the roads will become obsolete after 2030, this study focuses on the 2030–2040 period and links future renewable electricity production with the potential for storing it into used EVs' batteries. Even though battery capacity decreases by 80% or less, these batteries will remain operational and can still be seen as a valuable solution for storing peaks of renewable energy production beyond EV EOL. Design/methodology/approach - Storing renewable electricity is gaining as much attention as increasing its production and share. However, storing it in new batteries can be expensive as well as material and energy-intensive; therefore, existing capacities should be considered. The use of battery electric vehicles (BEVs) is among the most exciting concepts on how to achieve it. Since reduced battery capacity decreases car manufacturers' interest in battery reuse and recycling is environmentally hazardous, these batteries should be integrated into the future electricity storage system. Extending the life cycle of batteries from EVs beyond the EV's life cycle is identified as a potential solution for both BEVEOL and electricity storage. Findings - Results revealed a rise of photovoltaic (PV) solar power plants and an increasing number of EVs EOL that will have to be considered. It was forecasted that 6.27–7.22% of electricity from PV systems in scenario A (if EV lifetime is predicted to be 20 years) and 18.82–21.68% of electricity from PV systems in scenario B (if EV lifetime is predicted to be 20 years) could be stored in batteries. Storing electricity in EV batteries beyond EV EOL would significantly decrease the need for raw materials, increase energy system and EV sustainability performance simultaneously and enable leaner and more efficient electricity production and distribution network. Practical implications - Storing electricity in used batteries would significantly decrease the need for primary materials as well as optimizing lean and efficient electricity production network. Originality/value - Energy storage is one of the priorities of energy companies but can be expensive as well as material and energy-intensive. The use of BEV is among the most interesting concepts on how to achieve it, but they are considered only when in the use phase as vehicle to grid (V2G) concept. Because reduced battery capacity decreases the interest of car manufacturers to reuse batteries and recycling is environmentally risky, these batteries should be used for storing, especially renewable electricity peaks. Extending the life cycle of batteries beyond the EV's life cycle is identified as a potential solution for both BEV EOL and energy system sustainability, enabling more efficient energy management performance. The idea itself along with forecasting its potential is the main novelty of this paper.

Suggested Citation

  • Matevz Obrecht & Rhythm Singh & Timitej Zorman, 2021. "Conceptualizing a new circular economy feature – storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 71(3), pages 896-911, June.
  • Handle: RePEc:eme:ijppmp:ijppm-01-2021-0029
    DOI: 10.1108/IJPPM-01-2021-0029
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-01-2021-0029/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-01-2021-0029/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/IJPPM-01-2021-0029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijppmp:ijppm-01-2021-0029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.