IDEAS home Printed from
   My bibliography  Save this article

Housing features and rent: estimating the microstructures of rental housing


  • Hayato Nishi
  • Yasushi Asami
  • Chihiro Shimizu


Purpose - While consumers did not previously have information on detailed housing features via traditional media, such as magazines, nowadays, due to the progress in information technology, they can access detailed information on various housing features via housing information websites. Therefore, detailed housing features may affect current rents to some extent. This paper aims to identify the effects of detailed housing features on rent and on omitted variable bias in Tokyo, Japan. Design/methodology/approach - This paper applies the hedonic approach. To identify the effects of features which are not observed previously, we use a unique data set that contains various housing features and over 200,000 housing units. This data set enables to simulate the situations when the researcher cannot get some variables, and this simulation shows which variables cause omitted variable bias. Findings - The analysis shows that housing features significantly influence housing rent. If significant housing feature variables are not included in the hedonic model, the estimated coefficients show omitted variable bias. Additionally, unit-specific features such auto-locking door can cause omitted variable bias on location-specific features such accessibility to downtown. Originality/values - This paper shows empirical evidence that detailed housing features can cause omitted variable bias on other features including variables which are often used in previous searches. The result from our unique data set can be a guide for variable selection to reduce omitted variable bias.

Suggested Citation

  • Hayato Nishi & Yasushi Asami & Chihiro Shimizu, 2019. "Housing features and rent: estimating the microstructures of rental housing," International Journal of Housing Markets and Analysis, Emerald Group Publishing, vol. 12(2), pages 210-225, April.
  • Handle: RePEc:eme:ijhmap:ijhma-09-2018-0067

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijhmap:ijhma-09-2018-0067. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jade Turvey). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.