Author
Listed:
- Cao, Gewei
- Kornher, Lukas
- Brandi, Clara
Abstract
Amidst different global food insecurity challenges, like the COVID-19 pandemic and economic turmoil, this article investigates the potential of machine learning (ML) to enhance food insecurity forecasting. So far, only few existing studies have used pre-shock training data to predict food insecurity and if they did, they have neither done this at the household-level nor systematically tested the performance and robustness of ML algorithms during the shock phase. To address this research gap, we use pre-COVID trained models to predict household-level food insecurity during the COVID-19 pandemic in Uganda and propose a new approach to evaluate the performance and robustness of ML models. The objective of this study is therefore to find high-performance and robust ML algorithms during a shock period, which is both methodologically innovative and practically relevant for food insecurity research. First, we find that ML can work well in a shock context when only pre-shock food security data are available. We can identify 80% of food-insecure households during the COVID-19 pandemic based on pre-shock trained models at the cost of falsely classifying around 40% of food-secure households as food insecure. Second, we show that the extreme gradient boosting algorithm, trained by balanced weighting, works best in terms of prediction quality. We also identify the most important predictors and find that demographic and asset features play a crucial role in predicting food insecurity. Last but not least, we also make a contribution by showing how different ML models should be evaluated in terms of their area under curve (AUC) value, the ability of the model to correctly classify positive and negative cases, and in terms of the change in AUC in different situations.
Suggested Citation
Cao, Gewei & Kornher, Lukas & Brandi, Clara, 2025.
"How robust are machine learning approaches for improving food security amid crises? - Evidence from COVID-19 in Uganda,"
World Development, Elsevier, vol. 196(C).
Handle:
RePEc:eee:wdevel:v:196:y:2025:i:c:s0305750x25002578
DOI: 10.1016/j.worlddev.2025.107171
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:wdevel:v:196:y:2025:i:c:s0305750x25002578. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/worlddev .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.