IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v171y2025icp487-496.html
   My bibliography  Save this article

Party politics in transport policy with a large language model

Author

Listed:
  • Yun, Hyunsoo
  • Lee, Eun Hak

Abstract

Given the significant influence of lawmakers' political ideologies on legislative decision-making, analyzing their impact on transportation-related policymaking is of critical importance. This study introduces a novel framework that integrates a large language model (LLM) with explainable artificial intelligence (XAI) to analyze transportation-related legislative proposals. Legislative bill data from South Korea's 21st National Assembly were used to identify key factors shaping transportation policymaking. These include political affiliations and sponsor characteristics. The LLM was employed to classify transportation-related bill proposals through a stepwise filtering process based on keywords, sentences, and contextual relevance. XAI techniques were then applied to examine the relationships between political party affiliation and associated attributes. The results revealed that the number and proportion of conservative and progressive sponsors, along with district size and electoral population, were critical determinants shaping legislative outcomes. These findings suggest that both parties contributed to bipartisan legislation through different forms of engagement, such as initiating or supporting proposals. This integrated approach offers a valuable tool for understanding legislative dynamics and guiding future policy development, with broader implications for infrastructure planning and governance.

Suggested Citation

  • Yun, Hyunsoo & Lee, Eun Hak, 2025. "Party politics in transport policy with a large language model," Transport Policy, Elsevier, vol. 171(C), pages 487-496.
  • Handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:487-496
    DOI: 10.1016/j.tranpol.2025.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2500246X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:487-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.