IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v200y2025ics0191261525001572.html
   My bibliography  Save this article

C-MP: A decentralized adaptive-coordinated traffic signal control using the Max Pressure framework

Author

Listed:
  • Ahmed, Tanveer
  • Liu, Hao
  • Gayah, Vikash V.

Abstract

Coordinated traffic signals seek to provide uninterrupted vehicular flow through a series of closely spaced intersections, typically using pre-defined fixed signal timings and offsets. However, coordination is typically not possible when using adaptive traffic signals that dynamically change signal timings based on observed traffic conditions, particularly in decentralized systems where these decisions are made independently at each intersection. To alleviate this issue, this paper introduces a novel Max Pressure-based traffic signal framework that specifically seeks to provide coordination even under decentralized decision-making. The proposed Coordinated Max Pressure (C-MP) algorithm uses the space mean speeds of vehicles – obtained from detectors or in a connected vehicle (CV) environment – to explicitly detect freely flowing platoons of vehicles and prioritizes their movement along a corridor. Specifically, upstream platoons are detected, and their weight in the MP framework is increased to provide priority, while downstream platoons are detected, and their weight is reduced to ensure smooth traffic flow across corridors. The study analytically proves that C-MP maintains the desirable maximum stability property, while micro-simulation analyses conducted on an arterial network demonstrate its ability to achieve a larger stable region compared to benchmark MP control policies. Simulation results also reveal that the proposed control algorithm can effectively coordinate traffic signals in both directions along an arterial without explicitly assigned offsets or constraints. The results also reveal C-MP's superiority to benchmark coordination strategies in reducing travel time, and fuel consumption both at the corridor level and the network level by balancing the negative impact imparted to vehicles in the minor direction. The proposed algorithm also functions effectively when a subset of vehicles provide input to the controller, as would be the case in a partial CV environment.

Suggested Citation

  • Ahmed, Tanveer & Liu, Hao & Gayah, Vikash V., 2025. "C-MP: A decentralized adaptive-coordinated traffic signal control using the Max Pressure framework," Transportation Research Part B: Methodological, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transb:v:200:y:2025:i:c:s0191261525001572
    DOI: 10.1016/j.trb.2025.103308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525001572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:200:y:2025:i:c:s0191261525001572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.