IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v200y2025ics0191261525001420.html
   My bibliography  Save this article

Solving connected automated vehicle merging problems: A generalized benders decomposition-based approach for mixed-integer nonlinear programming

Author

Listed:
  • Chen, Jieming
  • Wu, Yiwei
  • Zhou, Yue
  • Chung, Edward
  • Wang, Shuaian

Abstract

Intensive interactions among vehicles often lead to congestion and accidents, particularly at freeway merging sections. As connected automated vehicles (CAVs) become a reality, their collaborative driving offers a promising solution. However, the real-time scheduling and trajectory planning for multiple CAV streams remain challenging and are not adequately addressed in the existing literature. To this end, this study formulates an integrated mixed-integer nonlinear programming (MINLP) model to jointly optimize lane change decisions, vehicle sequences, and vehicle trajectories, with the objective of maximizing traffic efficiency and driving comfort at multi-lane freeway merging sections. Existing commercial software struggles to handle such a complicated model. To rapidly obtain solutions, this study designs a Generalized Benders Decomposition (GBD)-based solution algorithm to tackle the problem of multi-vehicle combinatorial optimization and nonlinear trajectory optimization. Meanwhile, the finite convergence property of the GBD approach is proved. Numerical experimental results demonstrate that the proposed model outperforms three benchmark CAV control methods and a two-step method under various traffic demands and mainline-ramp demand ratios, highlighting significant traffic benefits from jointly planning lane changes and driving sequences, as well as utilizing microscopic vehicle information. Furthermore, this study evaluates traffic delay and the number of lane changes under varying road lengths, i.e., the lengths of lane-changing and merging areas, identifying recommended lengths for the maximum traffic efficiency, and analyzing the performance trend under varying traffic demands.

Suggested Citation

  • Chen, Jieming & Wu, Yiwei & Zhou, Yue & Chung, Edward & Wang, Shuaian, 2025. "Solving connected automated vehicle merging problems: A generalized benders decomposition-based approach for mixed-integer nonlinear programming," Transportation Research Part B: Methodological, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transb:v:200:y:2025:i:c:s0191261525001420
    DOI: 10.1016/j.trb.2025.103293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525001420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:200:y:2025:i:c:s0191261525001420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.