IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v200y2025ics0965856425002538.html

Understanding factors influencing ride-splitting adoption in Beijing: A comparative analysis with solo ride-hailing

Author

Listed:
  • Zhi, Danyue
  • Lv, Ying
  • Sun, Huijun
  • Feng, Xiaoyan
  • Song, Weize
  • Tirachini, Alejandro
  • Antoniou, Constantinos

Abstract

Ride-splitting, a special kind of ride-hailing service, presents significant potential for energy savings and emission reduction. Studying factors that promote ride-splitting can help build sustainable transportation systems. Although many studies have analyzed the impact of the built environment and sociodemographic variables on ride-splitting, there is a lack of consideration of variables specific to ride-hailing systems. This study aims to analyze the complex impact of explanatory variables (including ride-hailing system-specific variables) on ride-splitting, based on an interpretable machine-learning framework. Firstly, the price ratio between shared and solo trips, the distance passengers wait for the driver to pick them up (called passenger waiting distance), and the driver’s detour index are extracted from Beijing’s data. Then, a machine learning-based framework combining XGBoost and SHAP is constructed. The explained variables are the daily trip numbers of ride-splitting and solo ride-hailing between origin–destination (OD) pairs. The results show that price ratio, passenger waiting distance, and detour index have a greater impact on ride-splitting than solo ride-hailing. Based on SHAP values, a nonlinear threshold-based relationship between individual variables and ride-splitting demand is investigated. Exogenous variables related to the high adoption of ride-splitting include OD pairs having trip durations shorter than 20 min, a zonal per capita GDP below a certain threshold, and being located away from the city center. The interaction effects of multiple variables on ride-splitting, such as distance from the origin/destination to the city center and travel time, are investigated based on the SHAP interaction value. These findings help to adapt specific variables to facilitate the shift from solo trips to shared trips, which is conducive to more sustainable transportation patterns.

Suggested Citation

  • Zhi, Danyue & Lv, Ying & Sun, Huijun & Feng, Xiaoyan & Song, Weize & Tirachini, Alejandro & Antoniou, Constantinos, 2025. "Understanding factors influencing ride-splitting adoption in Beijing: A comparative analysis with solo ride-hailing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transa:v:200:y:2025:i:c:s0965856425002538
    DOI: 10.1016/j.tra.2025.104625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856425002538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    2. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Simon N. Wood, 2006. "Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1025-1036, December.
    4. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    5. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    6. Kalahasthi, Lokesh Kumar & Sánchez-Díaz, Iván & Pablo Castrellon, Juan & Gil, Jorge & Browne, Michael & Hayes, Simon & Sentís Ros, Carles, 2022. "Joint modeling of arrivals and parking durations for freight loading zones: Potential applications to improving urban logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 307-329.
    7. Mi Diao & Hui Kong & Jinhua Zhao, 2021. "Impacts of transportation network companies on urban mobility," Nature Sustainability, Nature, vol. 4(6), pages 494-500, June.
    8. Feng, Xuan & Lin, Qinping & Jia, Ning & Tian, Junfang, 2024. "The actual impact of ride-splitting: An empirical study based on large-scale GPS data," Transport Policy, Elsevier, vol. 147(C), pages 94-112.
    9. Ong, Felita & Loa, Patrick & Nurul Habib, Khandker, 2024. "Is it the trip or the trip-maker? Modelling factors influencing the demand induced by the availability of ride-sourcing services in Metro Vancouver," Transport Policy, Elsevier, vol. 151(C), pages 110-119.
    10. Wang, Sicheng & Noland, Robert B., 2021. "What is the elasticity of sharing a ridesourcing trip?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 284-305.
    11. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    12. Hensher, David A. & Balbontin, Camila & Beck, Matthew J. & Wei, Edward, 2022. "The impact of working from home on modal commuting choice response during COVID-19: Implications for two metropolitan areas in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 179-201.
    13. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    14. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chunjiao Dong, 2021. "Exploring the effects of the built environment on commuting mode choice in neighborhoods near public transit stations: evidence from China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 111-127, January.
    15. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    16. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    17. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    18. Abouelela, Mohamed & Chaniotakis, Emmanouil & Antoniou, Constantinos, 2023. "Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    19. Morteza Taiebat & Elham Amini & Ming Xu, 2022. "Sharing Behavior in Ride-hailing Trips: A Machine Learning Inference Approach," Papers 2201.12696, arXiv.org.
    20. Liu, Xiaobing & Yan, Xuedong & Liu, Feng & Wang, Rui & Leng, Yan, 2019. "A trip-specific model for fuel saving estimation and subsidy policy making of carpooling based on empirical data," Applied Energy, Elsevier, vol. 240(C), pages 295-311.
    21. Liao, Yuan, 2021. "Ride-sourcing compared to its public-transit alternative using big trip data," Journal of Transport Geography, Elsevier, vol. 95(C).
    22. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    23. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wu & Zhao, Shengchuan & Ma, Jingwen & Nielsen, Otto Anker & Jiang, Yu, 2023. "Book-ahead ride-hailing trip and its determinants: Findings from large-scale trip records in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    2. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    3. Sun, Yite & Liu, Xiaobing & Wang, Rui & Wang, Yun & Yan, Xuedong, 2025. "Nonlinear effects of built environment on ridesplitting ratio: Discrepancies across sharing motivations," Journal of Transport Geography, Elsevier, vol. 126(C).
    4. Zheng, Zhicheng & Li, Yang & Rong, Peijun & Zhang, Lijun & Qin, Yaochen & Liu, Gangjun, 2025. "Spatio-temporal dynamic characteristics of the substitution effect of ride-hailing travel and its multi-activity network: a case study of Chengdu," Journal of Transport Geography, Elsevier, vol. 127(C).
    5. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    6. Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
    7. Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
    8. Yuan Liang & Bingjie Yu & Xiaojian Zhang & Yi Lu & Linchuan Yang, 2022. "The Short-term Impact of Congestion Taxes on Ridesourcing Demand and Traffic Congestion: Evidence from Chicago," Papers 2207.01793, arXiv.org, revised Feb 2023.
    9. Wang, Hui & Hu, Xiaowei & Zhang, Yantang & An, Shi, 2025. "Analysis of ride-hailing service discontinuity: Links to built environment and public transportation," Journal of Transport Geography, Elsevier, vol. 126(C).
    10. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    11. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    12. Liu, Hao & Devunuri, Saipraneeth & Lehe, Lewis & Gayah, Vikash V., 2023. "Scale effects in ridesplitting: A case study of the City of Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    13. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
    15. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    16. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).
    17. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    18. Wang, Sicheng & Huang, Xiao & Shen, Qing, 2024. "Disparities in resilience and recovery of ridesourcing usage during COVID-19," Journal of Transport Geography, Elsevier, vol. 114(C).
    19. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    20. Wang, Zhiqi & Zhang, Yufeng & Jia, Bin & Gao, Ziyou, 2024. "Comparative Analysis of Usage Patterns and Underlying Determinants for Ride-hailing and Traditional Taxi Services: A Chicago Case Study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:200:y:2025:i:c:s0965856425002538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.