Author
Listed:
- Carvalho, Lucas Orbolato
- Murça, Mayara Condé Rocha
Abstract
Air traffic operations are often subject to congestion due to rising air travel demand levels and capacity limitations at airport and airspace resources. These capacity constraints are frequently exacerbated by adverse weather conditions, one of the primary causes of flight delays and additional operational costs. To mitigate the impact of demand-capacity imbalances on overall aviation system performance, there is a pressing need for more advanced Air Traffic Flow Management (ATFM) processes, which must be able to better address the complexities and challenges arising from dynamic and stochastic operational environments. In recent years, machine learning techniques have emerged as promising tools to enhance ATFM decision-making, offering potential solutions to these challenges. This study investigates the application of different reinforcement learning (RL) approaches and algorithms for runway capacity management under uncertainty, including both runway configuration selection and airport service rate allocation decisions. The problem is formulated as a Markov Decision Process (MDP), and two approaches are proposed: data-based and forecast-based. Both approaches leverage a state-of-the-art model-free RL method, with the Maskable Proximal Policy Optimization (PPO) algorithm, which is compared to a traditional RL algorithm - Deep Q-Network (DQN). The results reveal that both algorithms perform similarly, with our stochastic forecast-based and incremental data-driven approaches outperforming traditional methods. These approaches offer notable reductions in delay costs compared to the baseline policy typically used in practice and yield results comparable to the best theoretical solutions derived from genetic algorithms. This study highlights two efficient methods for addressing runway capacity management challenges at airports and provides valuable insights into data-driven ATFM optimization and policy implications.
Suggested Citation
Carvalho, Lucas Orbolato & Murça, Mayara Condé Rocha, 2025.
"A stochastic model-free reinforcement learning framework for optimizing runway capacity management under uncertainty,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 200(C).
Handle:
RePEc:eee:transa:v:200:y:2025:i:c:s0965856425002484
DOI: 10.1016/j.tra.2025.104620
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:200:y:2025:i:c:s0965856425002484. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.