Author
Listed:
- Xi, Haoning
- Nelson, John D.
- Hensher, David A.
- Hu, Songhua
- Shao, Xuefeng
- Xie, Chi
Abstract
The COVID-19 pandemic has severely disrupted travel behavior across diverse socio-economic areas, with a significant impact on transportation systems, public health, and the economy. As countries both recover and plan for future virus-driven stresses, it is crucial to identify the drivers of building travel behavior resilience, such as vaccination. Using an integrated dataset with over 150 million US county-level mobile device data from 01/01/2020 to 20/04/2021, we employ Bayesian structural time series (BSTS) models to infer the relative impact of the vaccination intervention on five types of travel behavior across Metropolitan, Micropolitan and Rural areas. Further, we develop partial least squares regression (PLSR) models to accurately estimate how COVID-19 vaccination rates, epidemiological indicators (i.e., COVID-19 incidence rates, death rates, and testing rates) and weather conditions (i.e., temperature, rain, and snow) would impact various travel behaviors across the diverse areas during the recovery period of the pandemic. The model results shed light on the positive role of vaccinations in fostering the recovery of travel behaviors and reveal the disparities in travel behavior resilience in response to vaccination rates, epidemiological indicators, and weather conditions across diverse areas. Our findings can offer evidential insights for policymakers, transport planners, and public health officials, guiding the development of equitable, sustainable, and resilient transportation systems prepared to adapt to future pandemics.
Suggested Citation
Xi, Haoning & Nelson, John D. & Hensher, David A. & Hu, Songhua & Shao, Xuefeng & Xie, Chi, 2024.
"Evaluating travel behavior resilience across urban and Rural areas during the COVID-19 Pandemic: Contributions of vaccination and epidemiological indicators,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 180(C).
Handle:
RePEc:eee:transa:v:180:y:2024:i:c:s0965856424000284
DOI: 10.1016/j.tra.2024.103980
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:180:y:2024:i:c:s0965856424000284. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.