Author
Listed:
- Roques, L.
- Hamel, F.
- Fayard, J.
- Fady, B.
- Klein, E.K.
Abstract
Diffusion is one of the most frequently used assumptions to explain dispersal. Diffusion models and in particular reaction–diffusion equations usually lead to solutions moving at constant speeds, too slow compared to observations. As early as 1899, Reid had found that the rate of spread of tree species migrating to northern environments at the beginning of the Holocene was too fast to be explained by diffusive dispersal. Rapid spreading is generally explained using long distance dispersal events, modelled through integro-differential equations (IDEs) with exponentially unbounded (EU) kernels, i.e. decaying slower than any exponential. We show here that classical reaction–diffusion models of the Fisher–Kolmogorov–Petrovsky–Piskunov type can produce patterns of colonisation very similar to those of IDEs, if the initial population is EU at the beginning of the considered colonisation event. Many similarities between reaction–diffusion models with EU initial data and IDEs with EU kernels are found; in particular comparable accelerating rates of spread and flattening of the solutions. There was previously no systematic mathematical theory for such reaction–diffusion models with EU initial data. Yet, EU initial data can easily be understood as consequences of colonisation–retraction events and lead to fast spreading and accelerating rates of spread without the long distance hypothesis.
Suggested Citation
Roques, L. & Hamel, F. & Fayard, J. & Fady, B. & Klein, E.K., 2010.
"Recolonisation by diffusion can generate increasing rates of spread,"
Theoretical Population Biology, Elsevier, vol. 77(3), pages 205-212.
Handle:
RePEc:eee:thpobi:v:77:y:2010:i:3:p:205-212
DOI: 10.1016/j.tpb.2010.02.002
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:77:y:2010:i:3:p:205-212. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.