IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v165y2025icp72-78.html
   My bibliography  Save this article

The distribution of the number of mutations in the genealogy of a sample from a single population

Author

Listed:
  • Fu, Yun-Xin

Abstract

The number K of mutations in the genealogy of a sample of n sequences from a single population is one essential summary statistic in molecular population genetics and is equal to the number of segregating sites in the sample under the infinite-sites model. Although its expectation and variance are the most widely utilized properties, its sampling formula (i.e., probability distribution) is the foundation for all explorations related to K. Despite existence of an analytic sampling formula, its numerical application is limited due to susceptibility to error propagation. This paper presents a new sampling formula for K in a random sample of DNA sequences from a neutral locus without recombination, taken from a single population evolving according to the Wright–Fisher model with a constant effective population size, or the constant-in-state model, which allows the effective population size to vary across different coalescent states. The new sampling formula is expressed as the sum of the probabilities of the various ways mutations can manifest in the sample genealogy and achieves simplicity by partitioning mutations into hypothetical atomic clusters that cannot be further divided. Under the Wright–Fisher model with a constant effective population size, the new sampling formula is closely analogous to the celebrated Ewens’ sampling formula for the number of distinct alleles in a sample. Numerical computation using the new sampling formula is accurate and is limited only by the burden of enumerating a large number of partitions of a large K. However, significant improvement in efficiency can be achieved by prioritizing the enumeration of partitions with a large number of parts.

Suggested Citation

  • Fu, Yun-Xin, 2025. "The distribution of the number of mutations in the genealogy of a sample from a single population," Theoretical Population Biology, Elsevier, vol. 165(C), pages 72-78.
  • Handle: RePEc:eee:thpobi:v:165:y:2025:i:c:p:72-78
    DOI: 10.1016/j.tpb.2025.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580925000498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2025.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:165:y:2025:i:c:p:72-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.